Comparison of 3- and 90-day bond strengths of 3 types of cement to nickel-chromium alloy
Carregando...
Data
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Tipo
Artigo
Direito de acesso
Resumo
The purpose of this in vitro study was to compare the 3- and 90-day bond strengths of 3 cements used for luting metal-ceramic crowns. Zinc phosphate cement (ZPC; SS White), resin-modified glass ionomer cement (RMGIC; Fuji Plus), and self-adhesive resin cement (SARC; RelyX U200) were assessed in 2 different treatment conditions (with and without microsandblasting of the alloy) and at 2 experimental times (3 days [E1] and 90 days [E2] after cementation). The buccal surfaces of 84 bovine teeth were ground until the dentin was exposed, and 84 nickel-chromium alloy plates cast from a resin model were cemented to the dentin surfaces with 1 of the 3 cements (n = 28). In half of the specimens of each group (n = 14), the bonding surfaces of the nickel-chromium plates received 6 seconds of microsandblasting with 45-μm aluminum oxide particles prior to cementation. The compressive shear bond strengths of the specimens were evaluated in a universal testing machine at E1 and E2 (n = 7). The SARC group showed the greatest bond strength, followed by the RMGIC group, while the bond strength of the ZPC group was significantly lower (P < 0.01). For the RMGIC specimens subjected to microsandblasting, there was a statistically significant difference between the mean bond strengths at E1 and E2 (P = 0.040). All of the other cement and treatment groups showed statistically similar adhesion results at E1 and E2 (P > 0.05). The complementary test by Šidák revealed that the cements Fuji Plus and RelyX U200 showed higher values at E2 and were statistically similar to each other (P > 0.05). Although RMGIC specimens showed a lower initial bond strength than SARC specimens, the fact that the microsandblasted RMGIC subgroup was the only one that demonstrated a significant increase in bond strength with aging suggests that RMGIC can be a material of first choice because it also costs less than SARC.
Descrição
Palavras-chave
dental crowns, metal-ceramic alloys, resin-modified glass ionomer cement, self-adhesive resin cement, zinc phosphate cement
Idioma
Inglês
Citação
General Dentistry, v. 70, n. 1, p. 30-33, 2022.



