Publicação: Sistemas dinâmicos finitos: Paciência Búlgara (Shift em partições e composições cíclicas)
Carregando...
Arquivos
Data
Autores
Orientador
Horita, Vanderlei Minori 

Coorientador
Pós-graduação
Matemática - IBILCE
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Universidade Estadual Paulista (Unesp)
Tipo
Dissertação de mestrado
Direito de acesso
Acesso aberto

Resumo
Resumo (português)
Neste trabalho abordamos um tema introdutório na interseção de duas áreas da Matemáticas, Sistemas Dinâmicos e Teoria dos Números. Através de um jogo aparentemente ingênuo, a Paciência Búlgara, estudamos dinâmicas em conjuntos finitos. Devidoà finitude do domínio, todos os pontos do sistema convergem para uma órbita periódica, mas interessante é saber quantas órbitas distintas o sistema apresenta em função da quantidade de elementos do domínio. Outra pergunta natural é sobre o tempo de convergência a estas órbitas. Estudamos também uma variação deste jogo, a Paciência Carolina
Resumo (inglês)
This work refers to a introductory topic in the intersection of two areas in Mathematics, Dynam-ical Systems and Number Theory. Motivated to a game seemingly naive, Bulgarian Solitaire, we study dynamics in finite sets. Due to the finiteness of the domain,all points of the sys-tem converge to a periodic orbit, but it is interesting to know how many distinct orbits the system displays depending on the size of the domain. Another natural question is about the convergence time of these orbits. We also study a variation of this game, Carolina Solitaire
Descrição
Palavras-chave
Sistemas dinâmicos diferenciais, Teoria dos números, Partições (Matematica), Differentiable dynamical systems
Idioma
Português
Como citar
TAMBELLINI, Leonardo. Sistemas dinâmicos finitos: Paciência Búlgara (Shift em partições e composições cíclicas). 2013. 80 f. Dissertação (mestrado) - Universidade Estadual Paulista Julio de Mesquita Filho. Instituto de Biociências, Letras e Ciências Exatas, 2013.