Publicação: Increased antibacterial activity of ZnO nanoparticles: Influence of size and surface modification
Nenhuma Miniatura disponível
Data
2019-05-01
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Tipo
Artigo
Direito de acesso
Acesso aberto

Resumo
In the current study, the size and surface of ZnO nanoparticle (ZnO NP) suspensions and powders were finely controlled to evaluate their influence on the ZnO antibacterial activity against Staphylococcus aureus and Escherichia coli. The ZnO NP were prepared by the sol-gel method with different reaction times for NP size control and followed by the addition of (3-glycidyloxypropyl) trimethoxysilane (GPTMS) as a surface modifier. The ZnO NP were characterized by different techniques and the antibacterial activity was assessed through the minimum inhibitory concentration assay (MIC), minimum bactericidal concentration assay (MBC) and scanning electron microscopy (SEM). The ZnO NP exhibited significant antibacterial activity against Staphylococcus aureus. The NP size highly influenced the antibacterial activity, which increased with decreasing particle size. The small ZnO NP presented bactericidal activity whereas the largest showed bacteriostatic activity. The use of GPTMS, in general, led to increase of MIC and MBC. The formation of holes in the cell wall of Staphylococcus aureus was evidenced by SEM after contact between the bacteria and ZnO NP. The cytotoxicity assay showed that ZnO NP did not cause a loss of cell viability in the human keratinocyte cell line (HaCat) at the maximum concentration assessed. Thus, this study indicated that 5 nm ZnO NP modified by GPTMS has great potential for use as an inorganic antibacterial material.
Descrição
Palavras-chave
Idioma
Inglês
Como citar
Colloids and Surfaces B: Biointerfaces, v. 177, p. 440-447.