Atenção!


O atendimento às questões referentes ao Repositório Institucional será interrompido entre os dias 20 de dezembro de 2025 a 4 de janeiro de 2026.

Pedimos a sua compreensão e aproveitamos para desejar boas festas!

Logo do repositório

Combination of the electronic nose with microbiology as a tool for rapid detection of Salmonella

dc.contributor.authorGonçalves, Wellington Belarmino
dc.contributor.authorTeixeira, Wanderson Sirley Reis [UNESP]
dc.contributor.authorSampaio, Aryele Nunes da Cruz Encide [UNESP]
dc.contributor.authorMartins, Otávio Augusto [UNESP]
dc.contributor.authorCervantes, Evelyn Perez
dc.contributor.authorMioni, Mateus de Souza Ribeiro [UNESP]
dc.contributor.authorGruber, Jonas
dc.contributor.authorPereira, Juliano Gonçalves [UNESP]
dc.contributor.institutionUniversidade de São Paulo (USP)
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.date.accessioned2025-04-29T18:06:27Z
dc.date.issued2023-09-01
dc.description.abstractSalmonella is one of the most important foodborne pathogens and its analysis in raw and processed products is mandatory in the food industry. Although microbiological analysis is the standard practice for Salmonella determination, these assays are commonly laborious and time-consuming, thus, alternative techniques based on easy operation, few manipulation steps, low cost, and reduced time are desirable. In this paper, we demonstrate the use of an e-nose based on ionogel composites (ionic liquid + gelatine + Fe3O4 particles) as a complementary tool for the conventional microbiological detection of Salmonella. We used the proposed methodology for differentiating Salmonella from Escherichia coli, Pseudomonas fluorescens, Pseudomonas aeruginosa, and Staphylococcus aureus in nonselective medium: pre-enrichment in brain heart infusion (BHI) (incubation at 35 °C, 24 h) and enrichment in tryptone soy agar (TSA) (incubation at 35 °C, 24 h), whereas Salmonella differentiation from E. coli and P. fluorescens was also evaluated in selective media, bismuth sulfite agar (BSA), xylose lysine deoxycholate agar (XLD), and brilliant green agar (BGA) (incubation at 35 °C, 24 h). The obtained data were compared by principal component analysis (PCA) and different machine learning algorithms: multilayer perceptron (MLP), linear discriminant analysis (LDA), instance-based (IBk), and Logistic Model Trees (LMT). For the nonselective media, under optimized conditions, taking merged data of BHI + TSA (total incubation time of 48 h), an accuracy of 85% was obtained with MLP, LDA, and LMT, while five separated clusters were presented in PCA, each cluster corresponding to a bacterium. In addition, for evaluation of the e-nose for discrimination of Salmonella using selective media, considering the combination of BSA + XLD and total incubation of 72 h, the PCA showed three separated and well-defined clusters corresponding to Salmonella, E. coli, and P. fluorescens, and an accuracy of 100% was obtained for all classifiers.en
dc.description.affiliationDepartamento de Química Fundamental Instituto de Química Universidade de São Paulo, Av. Prof Lineu Prestes, 748, SP
dc.description.affiliationFaculdade de Medicina Veterinária e Zootecnia Universidade Estadual Paulista “Júlio de Mesquita Filho” (UNESP), SP
dc.description.affiliationInstituto de Matemática e Estatística Universidade de São Paulo, SP
dc.description.affiliationDepartamento de Patologia Reprodução e Saúde Única Faculdade de Ciências Agrárias e Veterinárias Universidade Estadual Paulista “Júlio de Mesquita Filho” (UNESP), SP
dc.description.affiliationUnespFaculdade de Medicina Veterinária e Zootecnia Universidade Estadual Paulista “Júlio de Mesquita Filho” (UNESP), SP
dc.description.affiliationUnespDepartamento de Patologia Reprodução e Saúde Única Faculdade de Ciências Agrárias e Veterinárias Universidade Estadual Paulista “Júlio de Mesquita Filho” (UNESP), SP
dc.identifierhttp://dx.doi.org/10.1016/j.mimet.2023.106805
dc.identifier.citationJournal of Microbiological Methods, v. 212.
dc.identifier.doi10.1016/j.mimet.2023.106805
dc.identifier.issn1872-8359
dc.identifier.issn0167-7012
dc.identifier.scopus2-s2.0-85167609470
dc.identifier.urihttps://hdl.handle.net/11449/297387
dc.language.isoeng
dc.relation.ispartofJournal of Microbiological Methods
dc.sourceScopus
dc.subjectElectronic nose
dc.subjectFood safety
dc.subjectMachine learning
dc.subjectMicrobiology
dc.subjectSalmonella
dc.titleCombination of the electronic nose with microbiology as a tool for rapid detection of Salmonellaen
dc.typeArtigopt
dspace.entity.typePublication
relation.isOrgUnitOfPublication3d807254-e442-45e5-a80b-0f6bf3a26e48
relation.isOrgUnitOfPublication9ca5a87b-0c83-43fa-b290-6f8a4202bf99
relation.isOrgUnitOfPublication.latestForDiscovery3d807254-e442-45e5-a80b-0f6bf3a26e48
unesp.campusUniversidade Estadual Paulista (UNESP), Faculdade de Medicina Veterinária e Zootecnia, Botucatupt
unesp.campusUniversidade Estadual Paulista (UNESP), Faculdade de Ciências Agrárias e Veterinárias, Jaboticabalpt

Arquivos