Publicação: Green’s function for the one-dimensional Helmholtz equation: closed-form solution from its Fourier sine series
dc.contributor.author | Castro, Antonio S. De [UNESP] | |
dc.contributor.institution | Universidade Estadual Paulista (Unesp) | |
dc.date.accessioned | 2021-07-14T10:31:21Z | |
dc.date.available | 2021-07-14T10:31:21Z | |
dc.date.issued | 2021-04-16 | |
dc.description.abstract | It is presented a way to obtain the closed form for Green’s function related to the nonhomogeneous one-dimensional Helmholtz equation with homogeneous Dirichlet conditions on the boundary of the domain from its Fourier sine series representation. A closed form for the sum of the series ∑k=1∞sinkxsinky/(k2-α2) is found in the process. | en |
dc.description.affiliation | Universidade Estadual Paulista “Júlio de Mesquita Filho”, Departamento de Física | |
dc.description.affiliationUnesp | Universidade Estadual Paulista “Júlio de Mesquita Filho”, Departamento de Física | |
dc.format.extent | - | |
dc.identifier | http://dx.doi.org/10.1590/1806-9126-RBEF-2021-0068 | |
dc.identifier.citation | Revista Brasileira de Ensino de Física. Sociedade Brasileira de Física, v. 43, p. -, 2021. | |
dc.identifier.doi | 10.1590/1806-9126-RBEF-2021-0068 | |
dc.identifier.file | S1806-11172021000100101.pdf | |
dc.identifier.issn | 1806-1117 | |
dc.identifier.issn | 1806-9126 | |
dc.identifier.scielo | S1806-11172021000100101 | |
dc.identifier.uri | http://hdl.handle.net/11449/211902 | |
dc.language.iso | eng | |
dc.publisher | Sociedade Brasileira de Física | |
dc.relation.ispartof | Revista Brasileira de Ensino de Física | |
dc.rights.accessRights | Acesso aberto | |
dc.source | SciELO | |
dc.subject | Green’s function method | en |
dc.subject | Nonhomogeneous Helmholtz equation | en |
dc.subject | Homogeneous Dirichlet conditions. | en |
dc.title | Green’s function for the one-dimensional Helmholtz equation: closed-form solution from its Fourier sine series | en |
dc.type | Artigo | |
dspace.entity.type | Publication | |
unesp.author.orcid | 0000-0001-8802-8806[1] |
Arquivos
Pacote Original
1 - 1 de 1
Carregando...
- Nome:
- S1806-11172021000100101.pdf
- Tamanho:
- 579.36 KB
- Formato:
- Adobe Portable Document Format