Publicação: Quaternion-based Deep Belief Networks fine-tuning
Carregando...
Arquivos
Data
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Elsevier B.V.
Tipo
Artigo
Direito de acesso
Acesso aberto

Resumo
Deep learning techniques have been paramount in the last years, mainly due to their outstanding results in a number of applications. In this paper, we address the issue of fine-tuning parameters of Deep Belief Networks by means of meta-heuristics in which real-valued decision variables are described by quaternions. Such approaches essentially perform optimization in fitness landscapes that are mapped to a different representation based on hypercomplex numbers that may generate smoother surfaces. We therefore can map the optimization process onto a new space representation that is more suitable to learning parameters. Also, we proposed two approaches based on Harmony Search and quaternions that outperform the state-of-the-art results obtained so far in three public datasets for the reconstruction of binary images. (C) 2017 Elsevier B.V. All rights reserved.
Descrição
Palavras-chave
Deep Belief Networks, Quaternion, Harmony Search
Idioma
Inglês
Como citar
Applied Soft Computing. Amsterdam: Elsevier Science Bv, v. 60, p. 328-335, 2017.