Logotipo do repositório
 

Publicação:
Quaternion-based Deep Belief Networks fine-tuning

Carregando...
Imagem de Miniatura

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Elsevier B.V.

Tipo

Artigo

Direito de acesso

Acesso abertoAcesso Aberto

Resumo

Deep learning techniques have been paramount in the last years, mainly due to their outstanding results in a number of applications. In this paper, we address the issue of fine-tuning parameters of Deep Belief Networks by means of meta-heuristics in which real-valued decision variables are described by quaternions. Such approaches essentially perform optimization in fitness landscapes that are mapped to a different representation based on hypercomplex numbers that may generate smoother surfaces. We therefore can map the optimization process onto a new space representation that is more suitable to learning parameters. Also, we proposed two approaches based on Harmony Search and quaternions that outperform the state-of-the-art results obtained so far in three public datasets for the reconstruction of binary images. (C) 2017 Elsevier B.V. All rights reserved.

Descrição

Palavras-chave

Deep Belief Networks, Quaternion, Harmony Search

Idioma

Inglês

Como citar

Applied Soft Computing. Amsterdam: Elsevier Science Bv, v. 60, p. 328-335, 2017.

Itens relacionados

Unidades

Departamentos

Cursos de graduação

Programas de pós-graduação