Publicação: Quaternion-based Deep Belief Networks fine-tuning
dc.contributor.author | Papa, Joao Paulo [UNESP] | |
dc.contributor.author | Rosa, Gustavo H. [UNESP] | |
dc.contributor.author | Pereira, Danillo R. [UNESP] | |
dc.contributor.author | Yang, Xin-She | |
dc.contributor.institution | Universidade Estadual Paulista (Unesp) | |
dc.contributor.institution | Middlesex Univ | |
dc.date.accessioned | 2018-11-26T17:42:02Z | |
dc.date.available | 2018-11-26T17:42:02Z | |
dc.date.issued | 2017-11-01 | |
dc.description.abstract | Deep learning techniques have been paramount in the last years, mainly due to their outstanding results in a number of applications. In this paper, we address the issue of fine-tuning parameters of Deep Belief Networks by means of meta-heuristics in which real-valued decision variables are described by quaternions. Such approaches essentially perform optimization in fitness landscapes that are mapped to a different representation based on hypercomplex numbers that may generate smoother surfaces. We therefore can map the optimization process onto a new space representation that is more suitable to learning parameters. Also, we proposed two approaches based on Harmony Search and quaternions that outperform the state-of-the-art results obtained so far in three public datasets for the reconstruction of binary images. (C) 2017 Elsevier B.V. All rights reserved. | en |
dc.description.affiliation | Sao Paulo State Univ, Dept Comp, Av Eng Luiz Edmundo Carrijo Coube 14-01, BR-17033360 Bauru, SP, Brazil | |
dc.description.affiliation | Middlesex Univ, Sch Sci & Technol, London NW4 4BT, England | |
dc.description.affiliationUnesp | Sao Paulo State Univ, Dept Comp, Av Eng Luiz Edmundo Carrijo Coube 14-01, BR-17033360 Bauru, SP, Brazil | |
dc.description.sponsorship | Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) | |
dc.description.sponsorship | Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) | |
dc.description.sponsorshipId | FAPESP: 2014/12236-1 | |
dc.description.sponsorshipId | FAPESP: 2014/16250-9 | |
dc.description.sponsorshipId | FAPESP: 2015/25739-4 | |
dc.description.sponsorshipId | CNPq: 470571/2013-6 | |
dc.description.sponsorshipId | CNPq: 306166/2014-3 | |
dc.format.extent | 328-335 | |
dc.identifier | http://dx.doi.org/10.1016/j.asoc.2017.06.046 | |
dc.identifier.citation | Applied Soft Computing. Amsterdam: Elsevier Science Bv, v. 60, p. 328-335, 2017. | |
dc.identifier.doi | 10.1016/j.asoc.2017.06.046 | |
dc.identifier.file | WOS000414072200024.pdf | |
dc.identifier.issn | 1568-4946 | |
dc.identifier.uri | http://hdl.handle.net/11449/163439 | |
dc.identifier.wos | WOS:000414072200024 | |
dc.language.iso | eng | |
dc.publisher | Elsevier B.V. | |
dc.relation.ispartof | Applied Soft Computing | |
dc.relation.ispartofsjr | 1,199 | |
dc.rights.accessRights | Acesso aberto | |
dc.source | Web of Science | |
dc.subject | Deep Belief Networks | |
dc.subject | Quaternion | |
dc.subject | Harmony Search | |
dc.title | Quaternion-based Deep Belief Networks fine-tuning | en |
dc.type | Artigo | |
dcterms.license | http://www.elsevier.com/about/open-access/open-access-policies/article-posting-policy | |
dcterms.rightsHolder | Elsevier B.V. | |
dspace.entity.type | Publication | |
unesp.author.orcid | 0000-0002-6494-7514[1] | |
unesp.author.orcid | 0000-0001-8231-5556[4] | |
unesp.campus | Universidade Estadual Paulista (UNESP), Faculdade de Ciências, Bauru | pt |
unesp.department | Computação - FC | pt |
Arquivos
Pacote Original
1 - 1 de 1
Carregando...
- Nome:
- WOS000414072200024.pdf
- Tamanho:
- 1.37 MB
- Formato:
- Adobe Portable Document Format
- Descrição: