Logotipo do repositório
 

Publicação:
Quaternion-based Deep Belief Networks fine-tuning

dc.contributor.authorPapa, Joao Paulo [UNESP]
dc.contributor.authorRosa, Gustavo H. [UNESP]
dc.contributor.authorPereira, Danillo R. [UNESP]
dc.contributor.authorYang, Xin-She
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionMiddlesex Univ
dc.date.accessioned2018-11-26T17:42:02Z
dc.date.available2018-11-26T17:42:02Z
dc.date.issued2017-11-01
dc.description.abstractDeep learning techniques have been paramount in the last years, mainly due to their outstanding results in a number of applications. In this paper, we address the issue of fine-tuning parameters of Deep Belief Networks by means of meta-heuristics in which real-valued decision variables are described by quaternions. Such approaches essentially perform optimization in fitness landscapes that are mapped to a different representation based on hypercomplex numbers that may generate smoother surfaces. We therefore can map the optimization process onto a new space representation that is more suitable to learning parameters. Also, we proposed two approaches based on Harmony Search and quaternions that outperform the state-of-the-art results obtained so far in three public datasets for the reconstruction of binary images. (C) 2017 Elsevier B.V. All rights reserved.en
dc.description.affiliationSao Paulo State Univ, Dept Comp, Av Eng Luiz Edmundo Carrijo Coube 14-01, BR-17033360 Bauru, SP, Brazil
dc.description.affiliationMiddlesex Univ, Sch Sci & Technol, London NW4 4BT, England
dc.description.affiliationUnespSao Paulo State Univ, Dept Comp, Av Eng Luiz Edmundo Carrijo Coube 14-01, BR-17033360 Bauru, SP, Brazil
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipIdFAPESP: 2014/12236-1
dc.description.sponsorshipIdFAPESP: 2014/16250-9
dc.description.sponsorshipIdFAPESP: 2015/25739-4
dc.description.sponsorshipIdCNPq: 470571/2013-6
dc.description.sponsorshipIdCNPq: 306166/2014-3
dc.format.extent328-335
dc.identifierhttp://dx.doi.org/10.1016/j.asoc.2017.06.046
dc.identifier.citationApplied Soft Computing. Amsterdam: Elsevier Science Bv, v. 60, p. 328-335, 2017.
dc.identifier.doi10.1016/j.asoc.2017.06.046
dc.identifier.fileWOS000414072200024.pdf
dc.identifier.issn1568-4946
dc.identifier.urihttp://hdl.handle.net/11449/163439
dc.identifier.wosWOS:000414072200024
dc.language.isoeng
dc.publisherElsevier B.V.
dc.relation.ispartofApplied Soft Computing
dc.relation.ispartofsjr1,199
dc.rights.accessRightsAcesso aberto
dc.sourceWeb of Science
dc.subjectDeep Belief Networks
dc.subjectQuaternion
dc.subjectHarmony Search
dc.titleQuaternion-based Deep Belief Networks fine-tuningen
dc.typeArtigo
dcterms.licensehttp://www.elsevier.com/about/open-access/open-access-policies/article-posting-policy
dcterms.rightsHolderElsevier B.V.
dspace.entity.typePublication
unesp.author.orcid0000-0002-6494-7514[1]
unesp.author.orcid0000-0001-8231-5556[4]
unesp.campusUniversidade Estadual Paulista (UNESP), Faculdade de Ciências, Baurupt
unesp.departmentComputação - FCpt

Arquivos

Pacote Original

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
WOS000414072200024.pdf
Tamanho:
1.37 MB
Formato:
Adobe Portable Document Format
Descrição: