Logotipo do repositório
 

Publicação:
Defining universality classes for three different local bifurcations

Carregando...
Imagem de Miniatura

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Tipo

Artigo

Direito de acesso

Acesso abertoAcesso Aberto

Resumo

The convergence to the fixed point at a bifurcation and near it is characterized via scaling formalism for three different types of local bifurcations of fixed points in differential equations, namely: (i) saddle-node; (ii) transcritical; and (iii) supercritical pitchfork. At the bifurcation, the convergence is described by a homogeneous function with three critical exponents α, β and z. A scaling law is derived hence relating the three exponents. Near the bifurcation the evolution towards the fixed point is given by an exponential function whose relaxation time is marked by a power law of the distance of the bifurcation point with an exponent δ. The four exponents α, β, z and δ can be used to defined classes of universality for the local bifurcations of fixed points in differential equations.

Descrição

Palavras-chave

Critical exponents, Local bifurcations, Scaling law

Idioma

Inglês

Como citar

Communications in Nonlinear Science and Numerical Simulation, v. 39, p. 520-528.

Itens relacionados

Financiadores

Coleções

Unidades

Departamentos

Cursos de graduação

Programas de pós-graduação