Logotipo do repositório
 

Publicação:
Defining universality classes for three different local bifurcations

dc.contributor.authorLeonel, Edson D. [UNESP]
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionAbdus Salam International Center for Theoretical Physics
dc.date.accessioned2018-12-11T16:42:03Z
dc.date.available2018-12-11T16:42:03Z
dc.date.issued2016-10-01
dc.description.abstractThe convergence to the fixed point at a bifurcation and near it is characterized via scaling formalism for three different types of local bifurcations of fixed points in differential equations, namely: (i) saddle-node; (ii) transcritical; and (iii) supercritical pitchfork. At the bifurcation, the convergence is described by a homogeneous function with three critical exponents α, β and z. A scaling law is derived hence relating the three exponents. Near the bifurcation the evolution towards the fixed point is given by an exponential function whose relaxation time is marked by a power law of the distance of the bifurcation point with an exponent δ. The four exponents α, β, z and δ can be used to defined classes of universality for the local bifurcations of fixed points in differential equations.en
dc.description.affiliationDepartamento de Física UNESP - Universidade Estadual Paulista, Av. 24A, 1515 Bela Vista
dc.description.affiliationAbdus Salam International Center for Theoretical Physics, Strada Costiera 11
dc.description.affiliationUnespDepartamento de Física UNESP - Universidade Estadual Paulista, Av. 24A, 1515 Bela Vista
dc.format.extent520-528
dc.identifierhttp://dx.doi.org/10.1016/j.cnsns.2016.04.008
dc.identifier.citationCommunications in Nonlinear Science and Numerical Simulation, v. 39, p. 520-528.
dc.identifier.doi10.1016/j.cnsns.2016.04.008
dc.identifier.file2-s2.0-84963956014.pdf
dc.identifier.issn1007-5704
dc.identifier.scopus2-s2.0-84963956014
dc.identifier.urihttp://hdl.handle.net/11449/168586
dc.language.isoeng
dc.relation.ispartofCommunications in Nonlinear Science and Numerical Simulation
dc.relation.ispartofsjr1,372
dc.rights.accessRightsAcesso aberto
dc.sourceScopus
dc.subjectCritical exponents
dc.subjectLocal bifurcations
dc.subjectScaling law
dc.titleDefining universality classes for three different local bifurcationsen
dc.typeArtigo
dspace.entity.typePublication

Arquivos

Pacote Original

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
2-s2.0-84963956014.pdf
Tamanho:
1.25 MB
Formato:
Adobe Portable Document Format
Descrição:

Coleções