Metaheuristic Optimization for Transmission Network Expansion Planning: Testbed 2 of the Competition on Evolutionary Computation in the Energy Domain
Carregando...
Arquivos
Fontes externas
Fontes externas
Data
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Tipo
Trabalho apresentado em evento
Direito de acesso
Arquivos
Fontes externas
Fontes externas
Resumo
The complexity of the transmission network expansion planning (TNEP) problem has been increasing due to the new constraints given by renewable generation uncertainty, new market rules and players, and the continuous demand growth with the introduction of electric vehicles and energy storage systems. The problem consists of finding the optimal number and location of new transmission lines to support the demand, which can be extremely hard to optimize. As such, in this paper, we focus on metaheuristic optimization to solve a TENP problem proposed in testbed 2 of the 2023 competition on evolutionary computation in the energy domain. The 87-bus north-northeast Brazilian transmission system is considered for the case study, and different DE metaheuristics are used for the optimization process. Results show that the HyDE algorithm presents the overall best performance when compared to other DE strategies. HyDE is able to achieve the overall lowest costs with a reduction of around 67% compared to L-SHADE.
Descrição
Palavras-chave
differential evolution, metaheuristic, optimization, transmission network expansion planning
Idioma
Inglês
Citação
GECCO 2023 Companion - Proceedings of the 2023 Genetic and Evolutionary Computation Conference Companion, p. 1668-1675.




