Atenção!


O atendimento às questões referentes ao Repositório Institucional será interrompido entre os dias 20 de dezembro de 2025 a 4 de janeiro de 2026.

Pedimos a sua compreensão e aproveitamos para desejar boas festas!

Logo do repositório

Metaheuristic Optimization for Transmission Network Expansion Planning: Testbed 2 of the Competition on Evolutionary Computation in the Energy Domain

Carregando...
Imagem de Miniatura

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Tipo

Trabalho apresentado em evento

Direito de acesso

Resumo

The complexity of the transmission network expansion planning (TNEP) problem has been increasing due to the new constraints given by renewable generation uncertainty, new market rules and players, and the continuous demand growth with the introduction of electric vehicles and energy storage systems. The problem consists of finding the optimal number and location of new transmission lines to support the demand, which can be extremely hard to optimize. As such, in this paper, we focus on metaheuristic optimization to solve a TENP problem proposed in testbed 2 of the 2023 competition on evolutionary computation in the energy domain. The 87-bus north-northeast Brazilian transmission system is considered for the case study, and different DE metaheuristics are used for the optimization process. Results show that the HyDE algorithm presents the overall best performance when compared to other DE strategies. HyDE is able to achieve the overall lowest costs with a reduction of around 67% compared to L-SHADE.

Descrição

Palavras-chave

differential evolution, metaheuristic, optimization, transmission network expansion planning

Idioma

Inglês

Citação

GECCO 2023 Companion - Proceedings of the 2023 Genetic and Evolutionary Computation Conference Companion, p. 1668-1675.

Itens relacionados

Coleções

Unidades

Departamentos

Cursos de graduação

Programas de pós-graduação

Outras formas de acesso