Atenção!


O atendimento às questões referentes ao Repositório Institucional será interrompido entre os dias 20 de dezembro de 2025 a 4 de janeiro de 2026.

Pedimos a sua compreensão e aproveitamos para desejar boas festas!

Logo do repositório

Metaheuristic Optimization for Transmission Network Expansion Planning: Testbed 2 of the Competition on Evolutionary Computation in the Energy Domain

dc.contributor.authorAlmeida, José
dc.contributor.authorLezama, Fernando
dc.contributor.authorSoares, Joao
dc.contributor.authorMacedo, Leonardo H. [UNESP]
dc.contributor.authorVale, Zita
dc.contributor.authorRomero, Ruben [UNESP]
dc.contributor.institutionPolytechnic of Porto Porto
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.date.accessioned2025-04-29T20:02:56Z
dc.date.issued2023-07-15
dc.description.abstractThe complexity of the transmission network expansion planning (TNEP) problem has been increasing due to the new constraints given by renewable generation uncertainty, new market rules and players, and the continuous demand growth with the introduction of electric vehicles and energy storage systems. The problem consists of finding the optimal number and location of new transmission lines to support the demand, which can be extremely hard to optimize. As such, in this paper, we focus on metaheuristic optimization to solve a TENP problem proposed in testbed 2 of the 2023 competition on evolutionary computation in the energy domain. The 87-bus north-northeast Brazilian transmission system is considered for the case study, and different DE metaheuristics are used for the optimization process. Results show that the HyDE algorithm presents the overall best performance when compared to other DE strategies. HyDE is able to achieve the overall lowest costs with a reduction of around 67% compared to L-SHADE.en
dc.description.affiliationGECAD LASI Polytechnic of Porto Porto
dc.description.affiliationDepartment of Electrical Engineering UNESP
dc.description.affiliationUnespDepartment of Electrical Engineering UNESP
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.description.sponsorshipIdCAPES: 2019.00141
dc.format.extent1668-1675
dc.identifierhttp://dx.doi.org/10.1145/3583133.3596347
dc.identifier.citationGECCO 2023 Companion - Proceedings of the 2023 Genetic and Evolutionary Computation Conference Companion, p. 1668-1675.
dc.identifier.doi10.1145/3583133.3596347
dc.identifier.scopus2-s2.0-85169033261
dc.identifier.urihttps://hdl.handle.net/11449/305382
dc.language.isoeng
dc.relation.ispartofGECCO 2023 Companion - Proceedings of the 2023 Genetic and Evolutionary Computation Conference Companion
dc.sourceScopus
dc.subjectdifferential evolution
dc.subjectmetaheuristic
dc.subjectoptimization
dc.subjecttransmission network expansion planning
dc.titleMetaheuristic Optimization for Transmission Network Expansion Planning: Testbed 2 of the Competition on Evolutionary Computation in the Energy Domainen
dc.typeTrabalho apresentado em eventopt
dspace.entity.typePublication

Arquivos

Coleções