Atenção!


O atendimento às questões referentes ao Repositório Institucional será interrompido entre os dias 20 de dezembro de 2025 a 4 de janeiro de 2026.

Pedimos a sua compreensão e aproveitamos para desejar boas festas!

Logo do repositório

Impact of ionic liquid's cation alkyl chain length and reaction time on cellulose nanocrystals preparation

Resumo

Traditional methods to obtain cellulose nanocrystals typically involve mechanical and chemical processes and develop an improved process in terms of efficiency, sustainability, and the quality of CNCs produced are interesting. In this sense, we aimed to prepare cellulose nanocrystals (CNCs) from the hydrolysis of microcrystalline cellulose using protic ionic liquids (PILs), named 3-diethylamino-propylammonium hexanoate ([DEAPA][Hex]), 3-dimethylamino- 1-propylammonium hexanoate ([DMAPA][Hex]), and propylammonium hexanoate ([PA][Hex]) at different reaction times. The PILs demonstrated efficiency in producing cellulose nanocrystals, regardless of the cation size and reaction times. However, as expected the properties of the CNCs varied depending on the studied condition. The highest yield was observed in DMAPA[Hex], with a 34 % conversion. Crystalline indices decreased independent of the cation sizes and reaction times. Thermal stabilities were shifted to higher temperatures up to 92 ºC probably due to PILs cation sizes. In contrast, increasing reaction times decreased nanocrystals’ thermal stabilities up to 51ºC. So, protic ionic liquids (PILs) can be considered more environmentally friendly or sustainable solvents compared to traditional organic solvents for preparing cellulose nanocrystals. In the present work, it is reported an alternative method for obtaining CNCs and additionally provide the best preparation conditions for achieving important properties of this nanomaterial, with the potential for various applications.

Descrição

Palavras-chave

Cellulose nanoparticles, Hydrolysis, Microcrystalline cellulose, Protic ionic liquids

Idioma

Inglês

Citação

Carbohydrate Polymer Technologies and Applications, v. 6.

Itens relacionados

Financiadores

Unidades

Item type:Unidade,
Faculdade de Ciências Farmacêuticas
FCF
Campus: Araraquara


Departamentos

Cursos de graduação

Programas de pós-graduação

Outras formas de acesso