Logotipo do repositório
 

Publicação:
Nonlocal Markovian models for image denoising

dc.contributor.authorSalvadeo, Denis H. P. [UNESP]
dc.contributor.authorMascarenhas, Nelson D. A.
dc.contributor.authorLevada, Alexandre L. M.
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionUniversidade Federal de São Carlos (UFSCar)
dc.contributor.institutionFac Campo Limpo Paulista
dc.date.accessioned2018-11-26T16:33:00Z
dc.date.available2018-11-26T16:33:00Z
dc.date.issued2016-01-01
dc.description.abstractCurrently, the state-of-the art methods for image denoising are patch-based approaches. Redundant information present in nonlocal regions (patches) of the image is considered for better image modeling, resulting in an improved quality of filtering. In this respect, nonlocal Markov random field (MRF) models are proposed by redefining the energy functions of classical MRF models to adopt a nonlocal approach. With the new energy functions, the pairwise pixel interaction is weighted according to the similarities between the patches corresponding to each pair. Also, a maximum pseudolikelihood estimation of the spatial dependency parameter (beta) for these models is presented here. For evaluating this proposal, these models are used as an a priori model in a maximum a posteriori estimation to denoise additive white Gaussian noise in images. Finally, results display a notable improvement in both quantitative and qualitative terms in comparison with the local MRFs. (C) 2016 SPIE and IS&Ten
dc.description.affiliationSao Paulo State Univ, Dept Stat Appl Math & Computat, Rua 24A,1515, BR-13503013 Rio Claro, Brazil
dc.description.affiliationUniv Fed Sao Carlos, Dept Comp, Via Washington Luis,Km 235, BR-13565905 Sao Carlos, SP, Brazil
dc.description.affiliationFac Campo Limpo Paulista, Grad Program Comp Sci, Rua Guatemala 170, BR-13231230 Campo Limpo Paulista, Brazil
dc.description.affiliationUnespSao Paulo State Univ, Dept Stat Appl Math & Computat, Rua 24A,1515, BR-13503013 Rio Claro, Brazil
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipIdFAPESP: 2010/09248-7
dc.description.sponsorshipIdFAPESP: 2013/25595-7
dc.format.extent20
dc.identifierhttp://dx.doi.org/10.1117/1.JEI.25.1.013003
dc.identifier.citationJournal Of Electronic Imaging. Bellingham: Is&t & Spie, v. 25, n. 1, 20 p., 2016.
dc.identifier.doi10.1117/1.JEI.25.1.013003
dc.identifier.fileWOS000375930700004.pdf
dc.identifier.issn1017-9909
dc.identifier.urihttp://hdl.handle.net/11449/161502
dc.identifier.wosWOS:000375930700004
dc.language.isoeng
dc.publisherIs&t & Spie
dc.relation.ispartofJournal Of Electronic Imaging
dc.relation.ispartofsjr0,238
dc.rights.accessRightsAcesso aberto
dc.sourceWeb of Science
dc.subjectimage denoising
dc.subjectmaximum pseudolikelihood estimation
dc.subjectMarkov random fields
dc.subjectnonlocal patch-based approach
dc.subjectparameter estimation
dc.titleNonlocal Markovian models for image denoisingen
dc.typeArtigo
dcterms.rightsHolderIs&t & Spie
dspace.entity.typePublication
unesp.campusUniversidade Estadual Paulista (UNESP), Instituto de Geociências e Ciências Exatas, Rio Claropt
unesp.departmentEstatística, Matemática Aplicada e Computação - IGCEpt

Arquivos

Pacote Original

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
WOS000375930700004.pdf
Tamanho:
6.18 MB
Formato:
Adobe Portable Document Format
Descrição: