Logotipo do repositório
 

Publicação:
Unsupervised deep learning network for deformable fundus image registration

dc.contributor.authorBenvenuto, Giovana Augusta [UNESP]
dc.contributor.authorColnago, Marilaine [UNESP]
dc.contributor.authorCasaca, Wallace [UNESP]
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.date.accessioned2023-03-01T20:17:44Z
dc.date.available2023-03-01T20:17:44Z
dc.date.issued2022-01-01
dc.description.abstractIn ophthalmology and vision science applications, the process of registering a pair of fundus images, captured at different scales and viewing angles, is of paramount importance to support the diagnosis of diseases and routine eye examinations. Aiming at addressing the retina registration problem from the Deep Learning perspective, in this paper we introduce an end-to-end framework capable of learning the registration task in a fully unsupervised way. The designed approach combines Convolutional Neural Networks and Spatial Transformation Network into a unified pipeline that takes a similarity metric to gauge the difference between the images, thus enabling the image alignment without requiring any ground-truth data. Once the model is fully trained, it can perform one-shot registrations by just providing as input the pair of fundus images. As shown in the validation study, the trained model is able to successfully deal with several categories of fundus images, surpassing other recent techniques for retina registration.en
dc.description.affiliationSão Paulo State University Faculty of Science and Technology
dc.description.affiliationSão Paulo State University Department of Energy Engineering
dc.description.affiliationUnespSão Paulo State University Faculty of Science and Technology
dc.description.affiliationUnespSão Paulo State University Department of Energy Engineering
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipIdFAPESP: #2013/07375-0
dc.description.sponsorshipIdFAPESP: #2019/26288-7
dc.description.sponsorshipIdFAPESP: #2021/03328-3
dc.format.extent1281-1285
dc.identifierhttp://dx.doi.org/10.1109/ICASSP43922.2022.9747686
dc.identifier.citationICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings, v. 2022-May, p. 1281-1285.
dc.identifier.doi10.1109/ICASSP43922.2022.9747686
dc.identifier.issn1520-6149
dc.identifier.scopus2-s2.0-85134032473
dc.identifier.urihttp://hdl.handle.net/11449/240453
dc.language.isoeng
dc.relation.ispartofICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
dc.sourceScopus
dc.subjectDeep learning
dc.subjectFundus image registration
dc.titleUnsupervised deep learning network for deformable fundus image registrationen
dc.typeTrabalho apresentado em eventopt
dcterms.license“© © 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.”en
dspace.entity.typePublication
unesp.campusUniversidade Estadual Paulista (UNESP), Faculdade de Ciências e Tecnologia, Presidente Prudentept

Arquivos

Pacote Original

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
casaca_w_preprint_sjrp (1).pdf
Tamanho:
1.97 MB
Formato:
Adobe Portable Document Format
Descrição: