Logo do repositório

Unsupervised non-technical losses identification through optimum-path forest

dc.contributor.authorPassos Junior, Leandro Aparecido
dc.contributor.authorOba Ramos, Caio Cesar [UNESP]
dc.contributor.authorRodrigues, Douglas
dc.contributor.authorPereira, Danillo Roberto [UNESP]
dc.contributor.authorSouza, Andre Nunes de [UNESP]
dc.contributor.authorPontara da Costa, Kelton Augusto [UNESP]
dc.contributor.authorPapa, Joao Paulo [UNESP]
dc.contributor.institutionUniversidade Federal de São Carlos (UFSCar)
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2018-11-26T17:06:13Z
dc.date.available2018-11-26T17:06:13Z
dc.date.issued2016-11-01
dc.description.abstractNon-technical losses (NTL) identification has been paramount in the last years. However, it is not straightforward to obtain labelled datasets to perform a supervised NTL recognition task. In this paper, the optimum-path forest (OPF) clustering algorithm has been employed to identify irregular and regular profiles of commercial and industrial consumers obtained from a Brazilian electrical power company. Additionally, a model for the problem of NTL recognition as an anomaly detection task has been proposed when there are little or no information about irregular consumers. For such purpose, two new approaches based on the OPF framework have been introduced and compared against the well-known k-means, Gaussian mixture model, Birch, affinity propagation and one-class support vector machines. The experimental results have shown the robustness of OPF for both unsupervised NTL recognition and anomaly detection problems. In short, the main contributions of this paper are fourfold: (i) to employ unsupervised OPF for non-technical losses detection, (ii) to model the problem of NTL as being an anomaly detection task, (iii) to employ unsupervised OPF to estimate the parameters of the Gaussian distributions, and (iv) to present an anomaly detection approach based on unsupervised optimum-path forest. (C) 2016 Elsevier B.V. All rights reserved.en
dc.description.affiliationUniv Fed Sao Carlos, Dept Comp, Sao Carlos, SP, Brazil
dc.description.affiliationSao Paulo State Univ, Dept Comp, Bauru, Brazil
dc.description.affiliationSao Paulo State Univ, Dept Elect Engn, Bauru, Brazil
dc.description.affiliationUnespSao Paulo State Univ, Dept Comp, Bauru, Brazil
dc.description.affiliationUnespSao Paulo State Univ, Dept Elect Engn, Bauru, Brazil
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipIdFAPESP: 2009/16206-1
dc.description.sponsorshipIdFAPESP: 2012/14158-2
dc.description.sponsorshipIdFAPESP: 2013/20387-7
dc.description.sponsorshipIdFAPESP: 2014/16250-9
dc.description.sponsorshipIdFAPESP: 2015/00801-9
dc.description.sponsorshipIdCNPq: 303182/2011-3
dc.description.sponsorshipIdCNPq: 470571/2013-6
dc.description.sponsorshipIdCNPq: 306166/2014-3
dc.format.extent413-423
dc.identifierhttp://dx.doi.org/10.1016/j.epsr.2016.05.036
dc.identifier.citationElectric Power Systems Research. Lausanne: Elsevier Science Sa, v. 140, p. 413-423, 2016.
dc.identifier.doi10.1016/j.epsr.2016.05.036
dc.identifier.fileWOS000383527300044.pdf
dc.identifier.issn0378-7796
dc.identifier.urihttp://hdl.handle.net/11449/161932
dc.identifier.wosWOS:000383527300044
dc.language.isoeng
dc.publisherElsevier B.V.
dc.relation.ispartofElectric Power Systems Research
dc.relation.ispartofsjr1,048
dc.rights.accessRightsAcesso abertopt
dc.sourceWeb of Science
dc.subjectNon-technical losses
dc.subjectOptimum-path forest
dc.subjectClustering
dc.subjectAnomaly detection
dc.titleUnsupervised non-technical losses identification through optimum-path foresten
dc.typeArtigopt
dcterms.licensehttp://www.elsevier.com/about/open-access/open-access-policies/article-posting-policy
dcterms.rightsHolderElsevier B.V.
dspace.entity.typePublication
relation.isDepartmentOfPublication872c0bbb-bf84-404e-9ca7-f87a0fe94e58
relation.isDepartmentOfPublication4c2e649a-dc0d-49ec-bc7f-f5f46e998cd2
relation.isDepartmentOfPublication.latestForDiscovery872c0bbb-bf84-404e-9ca7-f87a0fe94e58
relation.isOrgUnitOfPublicationaef1f5df-a00f-45f4-b366-6926b097829b
relation.isOrgUnitOfPublication.latestForDiscoveryaef1f5df-a00f-45f4-b366-6926b097829b
unesp.author.lattes8212775960494686[5]
unesp.author.orcid0000-0003-3529-3109[1]
unesp.author.orcid0000-0002-8617-5404[5]
unesp.campusUniversidade Estadual Paulista (UNESP), Faculdade de Ciências, Baurupt
unesp.departmentComputação - FCpt
unesp.departmentEngenharia Elétrica - FEBpt

Arquivos

Pacote original

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
WOS000383527300044.pdf
Tamanho:
1.8 MB
Formato:
Adobe Portable Document Format
Descrição: