Food restriction increase the expression of mTORC1 complex genes in the skeletal muscle of juvenile pacu (Piaractus mesopotamicus)
Author
Date
2017-05-15Type
View/ Open
Access rights

Metadata
Show full item recordAbstract
Skeletal muscle is capable of phenotypic adaptation to environmental factors, such as nutrient availability, by altering the balance between muscle catabolism and anabolism that in turn coordinates muscle growth. Small noncoding RNAs, known as microRNAs (miRNAs), repress the expression of target mRNAs, and many studies have demonstrated that miRNAs regulate the mRNAs of catabolic and anabolic genes. We evaluated muscle morphology, gene expression of components involved in catabolism, anabolism and energetic metabolism and miRNAs expression in both the fast and slow muscle of juvenile pacu (Piaractus mesopotamicus) during food restriction and refeeding. Our analysis revealed that short periods of food restriction followed by refeeding predominantly affected fast muscle, with changes in muscle fiber diameter and miRNAs expression. There was an increase in the mRNA levels of catabolic pathways components (FBXO25, ATG12, BCL2) and energetic metabolism-related genes (PGC1 alpha and SDHA), together with a decrease in PPAR beta/delta mRNA levels. Interestingly, an increase in mRNA levels of anabolic genes (PI3K and mTORC1 complex: mTOR, mLST8 and RAPTOR) was also observed during food restriction. After refeeding, muscle morphology showed similar patterns of the control group; the majority of genes were slightly up-or down-regulated in fast and slow muscle, respectively; the levels of all miRNAs increased in fast muscle and some of them decreased in slow muscle. Our findings demonstrated that a short period of food restriction in juvenile pacu had a considerable impact on fast muscle, increasing the expression of anabolic (PI3K and mTORC1 complex: mTOR, mLST8 and RAPTOR) and energetic metabolism genes. The miRNAs (miR-1, miR-206, miR-199 and miR-23a) were more expressed during refeeding and while their target genes (IGF-1, mTOR, PGC1 alpha and MAFbx), presented a decreased expression. The alterations in mTORC1 complex observed during fasting may have influenced the rates of protein synthesis by using amino acids from protein degradation as an alternative mechanism to preserve muscle phenotype and metabolic demand maintenance.
How to cite this document
Language
Sponsor
Grant number

Related items
Showing items related by title, author, creator and subject.
-
Núcleos de Ensino da Unesp: artigos 2009
Pinho, Sheila Zambello de; Oliveira, José Brás Barreto de
; Gazola, Rodrigo José Cristiano
; Mazotti, Adriano César
; Molero, Camila Schimite
; Mendes, Carolina Borghi
; Mello, Denise Fernandes de
; Marques, Emilia de Mendonça Rosa
; Talamoni, Jandira Liria Biscalquini
; Silva, José Humberto Dias da
et al. (Coleção PROGRAD (UNESP), 2011) [Livro]
-
Núcleos de Ensino da Unesp: artigos 2008
Pinho, Sheila Zambello de; Oliveira, José Brás Barreto de
; Pontes, Sueli Rodrigues
; Almeida, Djanira Soares de Oliveira e
; Godoy, Kathya Maria Ayres de
; Rosa, Claudia de Souza
; Nunes, Julianus Araújo
; Salvador, Sérgio Azevedo
; David, Célia Maria
; Vilche Peña, Angel Fidel
et al. (Coleção PROGRAD (UNESP), 2011) [Livro]
-
Ser e tornar-se professor: práticas educativas no contexto escolar
Pinho, Sheila Zambello de; Spazziani, Maria de Lourdes
; Mendonça, Sueli Guadelupe de Lima
; Rubo, Elisabete Aparecida Andrello
; Villarreal, Dalva Maria de Oliveira
; Duarte, Camila
; Okamoto, Mary Yoko
; Souza, Thais R.
; Garms, Gilza Maria Zauhy
; Marin, Fátima Aparecida Dias Gomes
et al. (Coleção PROGRAD (UNESP), 2012) [Livro]