Logotipo do repositório
 

Publicação:
Pruning Optimum-Path Forest Classifiers Using Multi-Objective Optimization

Carregando...
Imagem de Miniatura

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Ieee

Tipo

Trabalho apresentado em evento

Direito de acesso

Acesso abertoAcesso Aberto

Resumo

Multi-objective optimization plays an important role when one has fitness functions that are somehow conflicting with each other. Also, parameter-dependent machine learning techniques can benefit from such optimization tools. In this paper, we propose a multi-objective-based strategy approach to build compact though representative training sets for Optimum-Path Forest (OPF) learning purposes. Although OPF pruning can provide such a nice representation, it comes with the price of being parameter-dependent. The proposed approach cope with that problem by avoiding the classifier to be hand-tuned by modeling the task of parameter learning as a multi-objective-oriented optimization problem, which can be less prone to errors. Experiments on public datasets show the robustness of the proposed approach, which is now parameterless and userfriendly.

Descrição

Palavras-chave

Idioma

Inglês

Como citar

2017 30th Sibgrapi Conference On Graphics, Patterns And Images (sibgrapi). New York: Ieee, p. 127-133, 2017.

Itens relacionados

Unidades

Departamentos

Cursos de graduação

Programas de pós-graduação