Logotipo do repositório
 

Publicação:
Unsupervised Breast Masses Classification Through Optimum-Path Forest

Carregando...
Imagem de Miniatura

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Ieee Computer Soc

Tipo

Trabalho apresentado em evento

Direito de acesso

Acesso abertoAcesso Aberto

Resumo

Computer-Aided Diagnosis (CAD) can be divided into two main categories : CADe (Computer-Aided Detection), which is focused on the detection of structures of interest, as well as to assist radiologists to find out signals of interest that might be hidden to human vision; and the CADx (ComputerAided Diagnosis), which works as a second observer, being responsible to give an opinion on a specific lesion. In CADe -based systems, the identification of mammograms with and without masses is highly needed to reduce the false positive rates regarding the automatic selection of regions of interest. The main contribution of this study is to introduce the unsupervised classifier Optimum-Path Forest to identify breast masses, and to evaluate its performance against with two other unsupervised techniques (Gaussian Mixture Model and k-Means) using texture features from images obtained from a private dataset composed by 120 images with and without the presence of masses.

Descrição

Palavras-chave

Optimum-Path Fores, Breast masses, Mammography

Idioma

Inglês

Como citar

2015 Ieee 28th International Symposium On Computer-based Medical Systems (cbms). Los Alamitos: Ieee Computer Soc, p. 238-243, 2015.

Itens relacionados

Financiadores

Unidades

Departamentos

Cursos de graduação

Programas de pós-graduação