Linear fractional differential equations and eigenfunctions of fractional differential operators
Carregando...
Arquivos
Data
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Tipo
Artigo
Direito de acesso
Acesso aberto

Resumo
Eigenfunctions associated with Riemann–Liouville and Caputo fractional differential operators are obtained by imposing a restriction on the fractional derivative parameter. Those eigenfunctions can be used to express the analytical solution of some linear sequential fractional differential equations. As a first application, we discuss analytical solutions for the so-called fractional Helmholtz equation with one variable, obtained from the standard equation in one dimension by replacing the integer order derivative by the Riemann–Liouville fractional derivative. A second application consists of an initial value problem for a fractional wave equation in two dimensions in which the integer order partial derivative with respect to the time variable is replaced by the Caputo fractional derivative. The classical Mittag-Leffler functions are important in the theory of fractional calculus because they emerge as solutions of fractional differential equations. Starting with the solution of a specific fractional differential equation in terms of these functions, we find a way to express the exponential function in terms of classical Mittag-Leffler functions. A remarkable characteristic of this relation is that it is true for any value of the parameter n appearing in the definition of the functions, i.e., we have an infinite family of different expressions for ex in terms of classical Mittag-Leffler functions.
Descrição
Palavras-chave
Caputo derivatives, Linear fractional differential equations, Mittag-Leffler functions, Riemann–Liouville derivatives
Idioma
Inglês
Citação
Computational and Applied Mathematics, v. 37, n. 2, p. 1012-1026, 2018.