Atenção!


O atendimento às questões referentes ao Repositório Institucional será interrompido entre os dias 20 de dezembro de 2025 a 4 de janeiro de 2026.

Pedimos a sua compreensão e aproveitamos para desejar boas festas!

Logo do repositório

High performance of chlorophyll-a prediction algorithms based on simulated OLCI Sentinel-3A bands in cyanobacteria-dominated inland waters

Carregando...
Imagem de Miniatura

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Tipo

Artigo

Direito de acesso

Acesso abertoAcesso Aberto

Resumo

In this research, we have investigated whether the chlorophyll-a (chl a) retrieval algorithms based on OLCI Sentinel-3A bands are suitable for cyanobacteria-dominated waters. Phytoplankton assemblages model optical properties of the water, influencing the performance of bio-optical algorithms. Understanding these processes is important to improve the prediction of photoactive pigments in order to use them as a proxy for trophic state and harmful algal bloom. So that, both empirical and semi-analytical approaches designed for different inland waters were tested. In addition, empirical models were tuned based on dataset collected in situ. The study was conducted in the Funil hydroelectric reservoir, where chl a ranged from 2.33 to 208.68 mg m−3 in May 2012 (austral fall) and 4.37 to 306.03 mg m−3 in October 2012 (austral spring). OLCI Sentinel-3A bands were tested in existing algorithms developed for other sensors and new band combinations were compared to analyze the errors produced. Normalized Difference Chlorophyll Index (NDCI) exhibited the best performance, with a Normalized Root Mean Square Error (NRMSE) of 9.30%. Result showed that wavelength at 665 nm is adequate to estimate chl a, although the maximum pigment absorption band is shifted due to phycocyanin fluorescence at approximately 650 nm.

Descrição

Palavras-chave

Case-2 waters, Harmful algal bloom, Remote sensing, Water quality

Idioma

Inglês

Citação

Advances in Space Research, v. 62, n. 2, p. 265-273, 2018.

Itens relacionados

Unidades

Departamentos

Cursos de graduação

Programas de pós-graduação

Outras formas de acesso