Logotipo do repositório
 

Publicação:
A Probabilistic Optimum-Path Forest Classifier for Non-Technical Losses Detection

Carregando...
Imagem de Miniatura

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Ieee-inst Electrical Electronics Engineers Inc

Tipo

Artigo

Direito de acesso

Acesso abertoAcesso Aberto

Resumo

Probabilistic-driven classification techniques extend the role of traditional approaches that output labels (usually integer numbers) only. Such techniques are more fruitful when dealing with problems where one is not interested in recognition/identification only, but also into monitoring the behavior of consumers and/ or machines, for instance. Therefore, by means of probability estimates, one can take decisions to work better in a number of scenarios. In this paper, we propose a probabilistic-based optimum-path forest (OPF) classifier to handle the problem of non-technical losses (NTL) detection in power distribution systems. The proposed approach is compared against naive OPF, probabilistic support vector machines, and logistic regression, showing promising results for both NTL identification and in the context of general-purpose applications.

Descrição

Palavras-chave

Optimum-path forest, probabilistic classification, non-technical losses

Idioma

Inglês

Como citar

Ieee Transactions On Smart Grid. Piscataway: Ieee-inst Electrical Electronics Engineers Inc, v. 10, n. 3, p. 3226-3235, 2019.

Itens relacionados

Unidades

Departamentos

Cursos de graduação

Programas de pós-graduação