Logotipo do repositório
 

Publicação:
Evaluating Genetic Algorithms with Different Population Structures on a Lot Sizing and Scheduling Problem

Carregando...
Imagem de Miniatura

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Assoc Computing Machinery

Tipo

Trabalho apresentado em evento

Direito de acesso

Resumo

This paper studies the use of different population structures in a Genetic Algorithm (GA) applied to lot sizing and scheduling problems. The population approaches are divided into two types: single-population and multi-population. The first type has a non-structured single population. The multi-population type presents non-structured and structured populations organized in binary and ternary trees. Each population approach is tested on lot sizing and scheduling problems found in soft drink companies. These problems have two interdependent levels with decisions concerning raw material storage and soft drink bottling. The challenge is to simultaneously determine the lot sizing and scheduling of raw materials in tanks and products in lines. Computational results are reported allowing determining the better population structure for the set of problem instances evaluated.

Descrição

Palavras-chave

Genetic algorithms, Multi-population, Lot sizing, Scheduling, Soft drink company

Idioma

Inglês

Como citar

Applied Computing 2008, Vols 1-3. New York: Assoc Computing Machinery, p. 1777-+, 2008.

Itens relacionados

Financiadores

Unidades

Departamentos

Cursos de graduação

Programas de pós-graduação