Publicação: On bifurcation and symmetry of solutions of symmetric nonlinear equations with odd-harmonic forcings
Carregando...
Arquivos
Data
Autores
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Academic Press Inc. Jnl-comp Subscriptions
Tipo
Artigo
Direito de acesso
Acesso aberto

Resumo
In this work we study existence, bifurcation, and symmetries of small solutions of the nonlinear equation Lx = N(x, p, epsilon) + mu f, which is supposed to be equivariant under the action of a group OHm, and where f is supposed to be OHm-invariant. We assume that L is a linear operator and N(., p, epsilon) is a nonlinear operator, both defined in a Banach space X, with values in a Banach space Z, and p, mu, and epsilon are small real parameters. Under certain conditions we show the existence of symmetric solutions and under additional conditions we prove that these are the only feasible solutions. Some examples of nonlinear ordinary and partial differential equations are analyzed. (C) 1995 Academic Press, Inc.
Descrição
Palavras-chave
Idioma
Inglês
Como citar
Journal of Mathematical Analysis and Applications. San Diego: Academic Press Inc. Jnl-comp Subscriptions, v. 196, n. 2, p. 526-553, 1995.