Logotipo do repositório
 

Publicação:
On bifurcation and symmetry of solutions of symmetric nonlinear equations with odd-harmonic forcings

Carregando...
Imagem de Miniatura

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Academic Press Inc. Jnl-comp Subscriptions

Tipo

Artigo

Direito de acesso

Acesso abertoAcesso Aberto

Resumo

In this work we study existence, bifurcation, and symmetries of small solutions of the nonlinear equation Lx = N(x, p, epsilon) + mu f, which is supposed to be equivariant under the action of a group OHm, and where f is supposed to be OHm-invariant. We assume that L is a linear operator and N(., p, epsilon) is a nonlinear operator, both defined in a Banach space X, with values in a Banach space Z, and p, mu, and epsilon are small real parameters. Under certain conditions we show the existence of symmetric solutions and under additional conditions we prove that these are the only feasible solutions. Some examples of nonlinear ordinary and partial differential equations are analyzed. (C) 1995 Academic Press, Inc.

Descrição

Palavras-chave

Idioma

Inglês

Como citar

Journal of Mathematical Analysis and Applications. San Diego: Academic Press Inc. Jnl-comp Subscriptions, v. 196, n. 2, p. 526-553, 1995.

Itens relacionados

Financiadores

Coleções

Unidades

Departamentos

Cursos de graduação

Programas de pós-graduação