Precipitates segmentation from scanning electron microscope images through machine learning techniques
Autor
Data de publicação
2011-06-02Tipo
Direito de acesso

Metadados
Exibir registro completoResumo
The presence of precipitates in metallic materials affects its durability, resistance and mechanical properties. Hence, its automatic identification by image processing and machine learning techniques may lead to reliable and efficient assessments on the materials. In this paper, we introduce four widely used supervised pattern recognition techniques to accomplish metallic precipitates segmentation in scanning electron microscope images from dissimilar welding on a Hastelloy C-276 alloy: Support Vector Machines, Optimum-Path Forest, Self Organizing Maps and a Bayesian classifier. Experimental results demonstrated that all classifiers achieved similar recognition rates with good results validated by an expert in metallographic image analysis. © 2011 Springer-Verlag Berlin Heidelberg.
Como citar este documento
Palavra-chave
Idioma
Este item aparece nas seguintes coleções
