Atenção!


O atendimento às questões referentes ao Repositório Institucional será interrompido entre os dias 20 de dezembro de 2024 a 5 de janeiro de 2025.

Pedimos a sua compreensão e aproveitamos para desejar boas festas!

 

3D Auto-Segmentation of Mandibular Condyles

dc.contributor.authorBrosset, Serge
dc.contributor.authorDumont, Maxime
dc.contributor.authorBianchi, Jonas [UNESP]
dc.contributor.authorRuellas, Antonio
dc.contributor.authorCevidanes, Lucia
dc.contributor.authorYatabe, Marilia
dc.contributor.authorGoncalves, Joao [UNESP]
dc.contributor.authorBenavides, Erika
dc.contributor.authorSoki, Fabiana
dc.contributor.authorPaniagua, Beatriz
dc.contributor.authorPrieto, Juan
dc.contributor.authorNajarian, Kayvan
dc.contributor.authorGryak, Jonathan
dc.contributor.authorSoroushmehr, Reza
dc.contributor.authorIEEE
dc.contributor.institutionUniv Michigan
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionUniv N Carolina
dc.date.accessioned2021-06-25T11:52:19Z
dc.date.available2021-06-25T11:52:19Z
dc.date.issued2020-01-01
dc.description.abstractTemporomandibular joints (TMJ) like a hinge connect the jawbone to the skull. TMJ disorders could cause pain in the jaw joint and the muscles controlling jaw movement. However, the disease cannot be diagnosed until it becomes symptomatic. It has been shown that bone resorption at the condyle articular surface is already evident at initial diagnosis of TMJ Osteoarthritis (OA). Therefore, analyzing the bone structure will facilitate the disease diagnosis. The important step towards this analysis is the condyle segmentation. This article deals with a method to automatically segment the temporomandibular joint condyle out of cone beam CT (CBCT) scans. In the proposed method we denoise images and apply 3D active contour and morphological operations to segment the condyle. The experimental results show that the proposed method yields the Dice score of 0.9461 with the standards deviation of 0.0888 when it is applied on CBCT images of 95 patients. This segmentation will allow large datasets to be analyzed more efficiently towards data sciences and machine learning approaches for disease classification.en
dc.description.affiliationUniv Michigan, Dept Orthodont & Pediat Dent, Ann Arbor, MI 48109 USA
dc.description.affiliationSao Paulo State Univ, Pediat Dent & Orthodont, Sao Paulo, Brazil
dc.description.affiliationUniv Michigan, Dept Periodont & Oral Med, Ann Arbor, MI 48109 USA
dc.description.affiliationUniv Michigan, Dept Computat Med & Bioinformat, Ann Arbor, MI 48109 USA
dc.description.affiliationUniv N Carolina, Psychiat, Chapel Hill, NC 27515 USA
dc.description.affiliationUniv N Carolina, Dept Psychiat, Chapel Hill, NC 27515 USA
dc.description.affiliationUniv N Carolina, Dept Orthodont, Chapel Hill, NC 27515 USA
dc.description.affiliationUniv N Carolina, Dept Comp Sci, Chapel Hill, NC 27515 USA
dc.description.affiliationUnespSao Paulo State Univ, Pediat Dent & Orthodont, Sao Paulo, Brazil
dc.description.sponsorshipNIDCR
dc.description.sponsorshipIdNIDCR: DEO24450
dc.format.extent1270-1273
dc.identifier.citation42nd Annual International Conferences Of The Ieee Engineering In Medicine And Biology Society: Enabling Innovative Technologies For Global Healthcare Embc'20. New York: Ieee, p. 1270-1273, 2020.
dc.identifier.issn1557-170X
dc.identifier.urihttp://hdl.handle.net/11449/209230
dc.identifier.wosWOS:000621592201146
dc.language.isoeng
dc.publisherIeee
dc.relation.ispartof42nd Annual International Conferences Of The Ieee Engineering In Medicine And Biology Society: Enabling Innovative Technologies For Global Healthcare Embc'20
dc.sourceWeb of Science
dc.title3D Auto-Segmentation of Mandibular Condylesen
dc.typeTrabalho apresentado em evento
dcterms.licensehttp://www.ieee.org/publications_standards/publications/rights/rights_policies.html
dcterms.rightsHolderIeee
unesp.author.orcid0000-0002-5125-7741[13]

Arquivos

Coleções