Discovering promising regions to help global numerical optimization algorithms
dc.contributor.author | Melo, Vinicius V. de | |
dc.contributor.author | Delbem, Alexandre C. B. | |
dc.contributor.author | Pinto Junior, Dorival L. | |
dc.contributor.author | Federson, Fernando M. | |
dc.contributor.institution | Universidade Estadual Paulista (Unesp) | |
dc.date.accessioned | 2015-03-18T15:52:37Z | |
dc.date.available | 2015-03-18T15:52:37Z | |
dc.date.issued | 2007-01-01 | |
dc.description.abstract | We have developed an algorithm using a Design of Experiments technique for reduction of search-space in global optimization problems. Our approach is called Domain Optimization Algorithm. This approach can efficiently eliminate search-space regions with low probability of containing a global optimum. The Domain Optimization Algorithm approach is based on eliminating non-promising search-space regions, which are identifyed using simple models (linear) fitted to the data. Then, we run a global optimization algorithm starting its population inside the promising region. The proposed approach with this heuristic criterion of population initialization has shown relevant results for tests using hard benchmark functions. | en |
dc.description.affiliation | State Univ Sao Paulo, Sao Carlos, SP, Brazil | |
dc.description.affiliationUnesp | State Univ Sao Paulo, Sao Carlos, SP, Brazil | |
dc.format.extent | 72-82 | |
dc.identifier | http://dx.doi.org/10.1007/978-3-540-76631-5_8 | |
dc.identifier.citation | Micai 2007: Advances In Artificial Intelligence. Berlin: Springer-verlag Berlin, v. 4827, p. 72-82, 2007. | |
dc.identifier.doi | 10.1007/978-3-540-76631-5_8 | |
dc.identifier.issn | 0302-9743 | |
dc.identifier.uri | http://hdl.handle.net/11449/116223 | |
dc.identifier.wos | WOS:000251037900008 | |
dc.language.iso | eng | |
dc.publisher | Springer | |
dc.relation.ispartof | Micai 2007: Advances In Artificial Intelligence | |
dc.relation.ispartofsjr | 0,295 | |
dc.rights.accessRights | Acesso aberto | |
dc.source | Web of Science | |
dc.title | Discovering promising regions to help global numerical optimization algorithms | en |
dc.type | Trabalho apresentado em evento | |
dcterms.license | http://www.springer.com/open+access/authors+rights?SGWID=0-176704-12-683201-0 | |
dcterms.rightsHolder | Springer | |
unesp.author.orcid | 0000-0003-1810-1742[2] |