Unsupervised manifold learning through reciprocal kNN graph and Connected Components for image retrieval tasks
dc.contributor.author | Pedronette, Daniel Carlos Guimarães [UNESP] | |
dc.contributor.author | Gonçalves, Filipe Marcel Fernandes [UNESP] | |
dc.contributor.author | Guilherme, Ivan Rizzo [UNESP] | |
dc.contributor.institution | Universidade Estadual Paulista (Unesp) | |
dc.date.accessioned | 2018-12-11T17:12:13Z | |
dc.date.available | 2018-12-11T17:12:13Z | |
dc.date.issued | 2018-03-01 | |
dc.description.abstract | Performing effective image retrieval tasks, capable of exploiting the underlying structure of datasets still constitutes a challenge research scenario. This paper proposes a novel manifold learning approach that exploits the intrinsic dataset geometry for improving the effectiveness of image retrieval tasks. The underlying dataset manifold is modeled and analyzed in terms of a Reciprocal kNN Graph and its Connected Components. The method computes the new retrieval results on an unsupervised way, without the need of any user intervention. A large experimental evaluation was conducted, considering different image retrieval tasks, various datasets and features. The proposed method yields better effectiveness results than various methods recently proposed, achieving effectiveness gains up to +40.75%. | en |
dc.description.affiliation | Department of Statistics Applied Mathematics and Computing (DEMAC) São Paulo State University (UNESP), Rio Claro | |
dc.description.affiliationUnesp | Department of Statistics Applied Mathematics and Computing (DEMAC) São Paulo State University (UNESP), Rio Claro | |
dc.description.sponsorship | Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) | |
dc.description.sponsorship | Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) | |
dc.description.sponsorshipId | FAPESP: 2013/08645-0 | |
dc.format.extent | 161-174 | |
dc.identifier | http://dx.doi.org/10.1016/j.patcog.2017.05.009 | |
dc.identifier.citation | Pattern Recognition, v. 75, p. 161-174. | |
dc.identifier.doi | 10.1016/j.patcog.2017.05.009 | |
dc.identifier.file | 2-s2.0-85019866884.pdf | |
dc.identifier.issn | 0031-3203 | |
dc.identifier.scopus | 2-s2.0-85019866884 | |
dc.identifier.uri | http://hdl.handle.net/11449/174645 | |
dc.language.iso | eng | |
dc.relation.ispartof | Pattern Recognition | |
dc.relation.ispartofsjr | 1,065 | |
dc.rights.accessRights | Acesso aberto | |
dc.source | Scopus | |
dc.subject | Connected components | |
dc.subject | Content-based image retrieval | |
dc.subject | Reciprocal kNN graph | |
dc.subject | Unsupervised manifold learning | |
dc.title | Unsupervised manifold learning through reciprocal kNN graph and Connected Components for image retrieval tasks | en |
dc.type | Artigo | |
unesp.campus | Universidade Estadual Paulista (Unesp), Instituto de Geociências e Ciências Exatas, Rio Claro | pt |
unesp.department | Estatística, Matemática Aplicada e Computação - IGCE | pt |
Arquivos
Pacote Original
1 - 1 de 1
Carregando...
- Nome:
- 2-s2.0-85019866884.pdf
- Tamanho:
- 3.18 MB
- Formato:
- Adobe Portable Document Format
- Descrição: