Double salt ionic liquids based on 1-ethyl-3-methylimidazolium acetate and hydroxyl-functionalized ammonium acetates: Strong effects of weak interactions

Nenhuma Miniatura disponível




Pereira, Jorge F. B. [UNESP]
Barber, Patrick S.
Kelley, Steven P.
Berton, Paula
Rogers, Robin D.

Título da Revista

ISSN da Revista

Título de Volume



The properties of double salt ionic liquids based on solutions of cholinium acetate ([Ch][OAc]), ethanolammonium acetate ([NH3(CH2)2OH][OAc]), hydroxylammonium acetate ([NH3OH][OAc]), ethylammonium acetate ([NH3CH2CH3][OAc]), and tetramethylammonium acetate ([N(CH3)4][OAc]) in 1-ethyl-3-methylimidazolium acetate ([C2mim][OAc]) were investigated by NMR spectroscopy and X-ray crystallography. Through mixture preparation, the solubility of [N(CH3)4][OAc] is the lowest, and [Ch][OAc] shows a 3-fold lower solubility than the other hydroxylated ammonium acetate-based salts in [C2mim][OAc] at room temperature. NMR and X-ray crystallographic studies of the pure salts suggest that the molecular-level mechanisms governing such miscibility differences are related to the weaker interactions between the -NH3 groups and [OAc]-, even though three of these salts possess the same strong 1:1 hydrogen bonds between the cation -OH group and the [OAc]- ion. The formation of polyionic clusters between the anion and those cations with unsatisfied hydrogen bond donors seems to be a new tool by which the solubility of these salts in [C2mim][OAc] can be controlled.



Como citar

Physical Chemistry Chemical Physics, v. 19, n. 39, p. 26934-26943, 2017.