Fine-Tuning Temperatures in Restricted Boltzmann Machines Using Meta-Heuristic Optimization

dc.contributor.authorRoder, Mateus [UNESP]
dc.contributor.authorRosa, Gustavo Henrique de [UNESP]
dc.contributor.authorPapa, Joao Paulo [UNESP]
dc.contributor.authorBreve, Fabricio Aparecido [UNESP]
dc.contributor.authorIEEE
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.date.accessioned2022-04-28T17:22:29Z
dc.date.available2022-04-28T17:22:29Z
dc.date.issued2020-01-01
dc.description.abstractRestricted Boltzmann Machines (RBM) are stochastic neural networks mainly used for image reconstruction and unsupervised feature learning. An enhanced version, the temperature-based RBM (T-RBM), considers a new temperature parameter during the learning process that influences the neurons' activation. Nevertheless, the major vulnerability of such models concerns selecting an adequate system's temperature, which might lead them to inadequate training or even overfitting when wrongly set, thus limiting the network from predicting or working effectively over unseen data. This paper addresses the problem of selecting a suitable system's temperature through a meta-heuristic optimization process. Meta-heuristic-driven techniques, such as Particle Swarm Optimization, Bat Algorithm, and Artificial Bee Colony are employed to find proper values for the temperature parameter. Additionally, for comparison purposes, three standard temperature values and a random search are used as baselines. The results revealed that optimizing T-RBM is suitable for training purposes, primarily due to their complex fitness landscape, which makes fine-tuning temperatures a non-trivial task.en
dc.description.affiliationUNESP Sao Paulo State Univ, Dept Comp, Bauru, SP, Brazil
dc.description.affiliationSao Paulo State Univ, Dept Math Stat & Comp, Rio Claro, SP, Brazil
dc.description.affiliationUnespUNESP Sao Paulo State Univ, Dept Comp, Bauru, SP, Brazil
dc.description.affiliationUnespSao Paulo State Univ, Dept Math Stat & Comp, Rio Claro, SP, Brazil
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipIdFAPESP: 2013/07375-0
dc.description.sponsorshipIdFAPESP: 2014/12236-1
dc.description.sponsorshipIdFAPESP: 2017/25908-6
dc.description.sponsorshipIdFAPESP: 2019/02205-5
dc.description.sponsorshipIdFAPESP: 2019/07825-1
dc.description.sponsorshipIdCNPq: 307066/2017-7
dc.description.sponsorshipIdCNPq: 427968/2018-6
dc.format.extent8
dc.identifier.citation2020 Ieee Congress On Evolutionary Computation (cec). New York: Ieee, 8 p., 2020.
dc.identifier.urihttp://hdl.handle.net/11449/218678
dc.identifier.wosWOS:000703998200017
dc.language.isoeng
dc.publisherIeee
dc.relation.ispartof2020 Ieee Congress On Evolutionary Computation (cec)
dc.sourceWeb of Science
dc.subjectImage Reconstruction
dc.subjectRestricted Boltzmann Machine
dc.subjectTemperature-based Systems
dc.subjectMeta-Heuristic Optimization
dc.titleFine-Tuning Temperatures in Restricted Boltzmann Machines Using Meta-Heuristic Optimizationen
dc.typeTrabalho apresentado em evento
dcterms.licensehttp://www.ieee.org/publications_standards/publications/rights/rights_policies.html
dcterms.rightsHolderIeee
unesp.author.orcid0000-0002-6442-8343[2]
unesp.campusUniversidade Estadual Paulista (Unesp), Faculdade de Ciências, Baurupt
unesp.campusUniversidade Estadual Paulista (Unesp), Instituto de Geociências e Ciências Exatas, Rio Claropt
unesp.departmentComputação - FCpt
unesp.departmentMatemática - IGCEpt

Arquivos