Logotipo do repositório
 

Publicação:
Learning Parameters in Deep Belief Networks Through Firefly Algorithm

dc.contributor.authorRosa, Gustavo [UNESP]
dc.contributor.authorPapa, Joao [UNESP]
dc.contributor.authorCosta, Kelton [UNESP]
dc.contributor.authorPassos, Leandro
dc.contributor.authorPereira, Clayton
dc.contributor.authorYang, Xin-She
dc.contributor.authorSchwenker, F.
dc.contributor.authorAbbas, H. M.
dc.contributor.authorElGayar, N.
dc.contributor.authorTrentin, E.
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionUniversidade Federal de São Carlos (UFSCar)
dc.contributor.institutionMiddlesex Univ
dc.date.accessioned2018-11-26T15:37:35Z
dc.date.available2018-11-26T15:37:35Z
dc.date.issued2016-01-01
dc.description.abstractRestricted Boltzmann Machines (RBMs) are among the most widely pursed techniques in the context of deep learning-based applications. Their usage enables sundry parallel implementations, which have become pivotal in nowadays large-scale-oriented applications. In this paper, we propose to address the main shortcoming of such models, i.e. how to properly fine-tune their parameters, by means of the Firefly Algorithm, as well as we also consider Deep Belief Networks, a stackeddriven version of the RBMs. Additionally, we also take into account Harmony Search, Improved Harmony Search and the well-known Particle Swarm Optimization for comparison purposes. The results obtained showed the Firefly Algorithm is suitable to the context addressed in this paper, since it obtained the best results in all datasets.en
dc.description.affiliationSao Paulo State Univ, Dept Comp, Sao Paulo, Brazil
dc.description.affiliationUniv Fed Sao Carlos, Dept Comp, Sao Carlos, SP, Brazil
dc.description.affiliationMiddlesex Univ, Sch Sci & Technol, London, England
dc.description.affiliationUnespSao Paulo State Univ, Dept Comp, Sao Paulo, Brazil
dc.format.extent138-149
dc.identifierhttp://dx.doi.org/10.1007/978-3-319-46182-3_12
dc.identifier.citationArtificial Neural Networks In Pattern Recognition. Berlin: Springer-verlag Berlin, v. 9896, p. 138-149, 2016.
dc.identifier.doi10.1007/978-3-319-46182-3_12
dc.identifier.fileWOS000389727700012.pdf
dc.identifier.issn0302-9743
dc.identifier.urihttp://hdl.handle.net/11449/159240
dc.identifier.wosWOS:000389727700012
dc.language.isoeng
dc.publisherSpringer
dc.relation.ispartofArtificial Neural Networks In Pattern Recognition
dc.relation.ispartofsjr0,295
dc.rights.accessRightsAcesso aberto
dc.sourceWeb of Science
dc.subjectDeep Belief Networks
dc.subjectDeep learning
dc.subjectFirefly algorithm
dc.titleLearning Parameters in Deep Belief Networks Through Firefly Algorithmen
dc.typeTrabalho apresentado em evento
dcterms.licensehttp://www.springer.com/open+access/authors+rights?SGWID=0-176704-12-683201-0
dcterms.rightsHolderSpringer
dspace.entity.typePublication
unesp.author.orcid0000-0001-8231-5556[6]

Arquivos

Pacote Original

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
WOS000389727700012.pdf
Tamanho:
281.12 KB
Formato:
Adobe Portable Document Format
Descrição:

Coleções