An elementary proof of Euler's formula using Cauchy's method

dc.contributor.authorBrasselet, Jean-Paul
dc.contributor.authorThủy, Nguyn̂̃n Thị Bích [UNESP]
dc.contributor.institutionAix-Marseille Université
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2021-06-25T10:19:59Z
dc.date.available2021-06-25T10:19:59Z
dc.date.issued2021-04-15
dc.description.abstractThe use of Cauchy's method to prove Euler's well-known formula is an object of many controversies. The purpose of this paper is to prove that Cauchy's method applies for convex polyhedra and not only for them, but also for surfaces such as the torus, the projective plane, the Klein bottle and the pinched torus.en
dc.description.affiliationCNRS I2M Aix-Marseille Université
dc.description.affiliationUNESP Universidade Estadual Paulista “Júlio de Mesquita Filho”
dc.description.affiliationUnespUNESP Universidade Estadual Paulista “Júlio de Mesquita Filho”
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipIdFAPESP: 2015/06697-9
dc.identifierhttp://dx.doi.org/10.1016/j.topol.2020.107558
dc.identifier.citationTopology and its Applications, v. 293.
dc.identifier.doi10.1016/j.topol.2020.107558
dc.identifier.issn0166-8641
dc.identifier.scopus2-s2.0-85099170323
dc.identifier.urihttp://hdl.handle.net/11449/205712
dc.language.isoeng
dc.relation.ispartofTopology and its Applications
dc.sourceScopus
dc.subjectCauchy
dc.subjectDescartes
dc.subjectEuler formula
dc.subjectPolyhedron
dc.titleAn elementary proof of Euler's formula using Cauchy's methoden
dc.typeArtigo

Arquivos

Coleções