Publicação: Linear fractional differential equations and eigenfunctions of fractional differential operators
dc.contributor.author | Grigoletto, Eliana Contharteze [UNESP] | |
dc.contributor.author | de Oliveira, Edmundo Capelas | |
dc.contributor.author | de Figueiredo Camargo, Rubens [UNESP] | |
dc.contributor.institution | Universidade Estadual Paulista (Unesp) | |
dc.contributor.institution | Universidade Estadual de Campinas (UNICAMP) | |
dc.date.accessioned | 2018-12-11T16:53:26Z | |
dc.date.available | 2018-12-11T16:53:26Z | |
dc.date.issued | 2018-05-01 | |
dc.description.abstract | Eigenfunctions associated with Riemann–Liouville and Caputo fractional differential operators are obtained by imposing a restriction on the fractional derivative parameter. Those eigenfunctions can be used to express the analytical solution of some linear sequential fractional differential equations. As a first application, we discuss analytical solutions for the so-called fractional Helmholtz equation with one variable, obtained from the standard equation in one dimension by replacing the integer order derivative by the Riemann–Liouville fractional derivative. A second application consists of an initial value problem for a fractional wave equation in two dimensions in which the integer order partial derivative with respect to the time variable is replaced by the Caputo fractional derivative. The classical Mittag-Leffler functions are important in the theory of fractional calculus because they emerge as solutions of fractional differential equations. Starting with the solution of a specific fractional differential equation in terms of these functions, we find a way to express the exponential function in terms of classical Mittag-Leffler functions. A remarkable characteristic of this relation is that it is true for any value of the parameter n appearing in the definition of the functions, i.e., we have an infinite family of different expressions for ex in terms of classical Mittag-Leffler functions. | en |
dc.description.affiliation | Departamento de Bioprocessos e Biotecnologia FCA-UNESP, Rua José Barbosa de Barros 1780 | |
dc.description.affiliation | Departamento de Matemática Aplicada IMECC-UNICAMP | |
dc.description.affiliation | Departamento de Matemática Faculdade de Ciências UNESP, Av. Eng. Luiz Edmundo Carrijo Coube, 14-01 Bairro: Vargem Limpa | |
dc.description.affiliationUnesp | Departamento de Bioprocessos e Biotecnologia FCA-UNESP, Rua José Barbosa de Barros 1780 | |
dc.description.affiliationUnesp | Departamento de Matemática Faculdade de Ciências UNESP, Av. Eng. Luiz Edmundo Carrijo Coube, 14-01 Bairro: Vargem Limpa | |
dc.format.extent | 1012-1026 | |
dc.identifier | http://dx.doi.org/10.1007/s40314-016-0381-1 | |
dc.identifier.citation | Computational and Applied Mathematics, v. 37, n. 2, p. 1012-1026, 2018. | |
dc.identifier.doi | 10.1007/s40314-016-0381-1 | |
dc.identifier.file | 2-s2.0-85047440508.pdf | |
dc.identifier.issn | 1807-0302 | |
dc.identifier.issn | 0101-8205 | |
dc.identifier.lattes | 6909447212349406 | |
dc.identifier.orcid | 0000-0003-4336-5387 | |
dc.identifier.scopus | 2-s2.0-85047440508 | |
dc.identifier.uri | http://hdl.handle.net/11449/171031 | |
dc.language.iso | eng | |
dc.relation.ispartof | Computational and Applied Mathematics | |
dc.relation.ispartofsjr | 0,272 | |
dc.rights.accessRights | Acesso aberto | pt |
dc.source | Scopus | |
dc.subject | Caputo derivatives | |
dc.subject | Linear fractional differential equations | |
dc.subject | Mittag-Leffler functions | |
dc.subject | Riemann–Liouville derivatives | |
dc.title | Linear fractional differential equations and eigenfunctions of fractional differential operators | en |
dc.type | Artigo | pt |
dspace.entity.type | Publication | |
unesp.author.lattes | 6909447212349406[1] | |
unesp.author.orcid | 0000-0003-4336-5387[1] | |
unesp.author.orcid | 0000-0003-4336-5387[1] | |
unesp.campus | Universidade Estadual Paulista (UNESP), Faculdade de Ciências Agronômicas, Botucatu | pt |
unesp.campus | Universidade Estadual Paulista (UNESP), Faculdade de Ciências, Bauru | pt |
Arquivos
Pacote Original
1 - 1 de 1
Carregando...
- Nome:
- 2-s2.0-85047440508.pdf
- Tamanho:
- 992.59 KB
- Formato:
- Adobe Portable Document Format
- Descrição: