Publicação:
Teoria quântica do campo escalar real com autoacoplamento quártico - simulações de Monte Carlo na rede com um algoritmo worm

dc.contributor.advisorKrein, Gastão Inácio [UNESP]
dc.contributor.authorLeme, Rafael Reis [UNESP]
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2014-06-11T19:25:34Z
dc.date.available2014-06-11T19:25:34Z
dc.date.issued2011-06-13
dc.description.abstractNeste trabalho apresentamos resultados de simulações de Monte Carlo de uma teoria quântica de campos escalar com autointeração ´fi POT. 4' em uma rede (1+1) empregando o recentemente proposto algoritmo worm. Em simulações de Monte Carlo, a eficiência de um algoritmo é medida em termos de um expoente dinâmico 'zeta', que se relaciona com o tempo de autocorrelação 'tau' entre as medidas de acordo com a relação 'tau' 'alfa' 'L POT. zeta', onde L é o comprimento da rede. O tempo de autocorrelação fornece uma medida para a “memória” do processo de atualização de uma simulação de Monte Carlo. O algoritmo worm possui um 'zeta' comparável aos obtidos com os eficientes algoritmos do tipo cluster, entretanto utiliza apenas processos de atualização locais. Apresentamos resultados para observáveis em função dos parâmetros não renormalizados do modelo 'lâmbda' e 'mü POT. 2'. Particular atenção é dedicada ao valor esperado no vácuo < 'fi'('qui')> e a função de correlação de dois pontos <'fi'('qui')'fi'('qui' POT. 1')>. Determinamos a linha crítica ( ´lâmbda IND. C', 'mu IND C POT. 2') que separa a fase simétrica e com quebra espontânea de simetria e comparamos os resultados com a literaturapt
dc.description.abstractIn this work we will present results of Monte Carlo simulations of the ´fi POT. 4'quantum field theory on a (1 + 1) lattice employing the recently-proposed worm algorithm. In Monte Carlo simulations, the efficiency of an algorithm is measured in terms of a dynamical critical exponent 'zeta', that is related with the autocorrelation time 'tau' of measurements as 'tau' 'alfa' 'L POT. zeta', where L is the lattice length. The autocorrelation time provides a measure of the “memory” of the Monte Carlo updating process. The worm algorithm has a 'zeta' comparable with the ones obtained with the efficient cluster algorithms, but uses local updates only. We present results for observables as functions of the unrenormalized parameters of the theory 'lâmbda and 'mü POT. 2'. Particular attention is devoted to the vacuum expectation value < 'fi'('qui')> and the two-point correlation function <'fi'('qui')fi(qui pot. 1')>. We determine the critical line( ´lâmbda IND. C', 'mu IND C POT. 2') that separates the symmetric and spontaneously-broken phases and compare with results of the literatureen
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.format.extent104 f. : il.
dc.identifier.aleph000677646
dc.identifier.capes33015015001P7
dc.identifier.citationLEME, Rafael Reis. Teoria quântica do campo escalar real com autoacoplamento quártico - simulações de Monte Carlo na rede com um algoritmo worm. 2011. 104 f. Dissertação (mestrado) - Universidade Estadual Paulista, Instituto de Física Teórica, 2011.
dc.identifier.fileleme_rr_me_ift.pdf
dc.identifier.lattes5704289678296630
dc.identifier.urihttp://hdl.handle.net/11449/92038
dc.language.isopor
dc.publisherUniversidade Estadual Paulista (Unesp)
dc.rights.accessRightsAcesso aberto
dc.sourceAleph
dc.subjectTeoria quântica de campospt
dc.subjectMetodo de Monte Carlo - Métodos de simulaçãopt
dc.subjectQuantum field theoryen
dc.subjectMonte Carlo method - Simulation methodsen
dc.titleTeoria quântica do campo escalar real com autoacoplamento quártico - simulações de Monte Carlo na rede com um algoritmo wormpt
dc.typeDissertação de mestrado
dspace.entity.typePublication
unesp.author.lattes5704289678296630
unesp.campusUniversidade Estadual Paulista (Unesp), Instituto de Física Teórica (IFT), São Paulopt
unesp.graduateProgramFísica - IFTpt
unesp.knowledgeAreaFísica teóricapt

Arquivos

Pacote Original

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
leme_rr_me_ift.pdf
Tamanho:
902.77 KB
Formato:
Adobe Portable Document Format