Analysis of EEG sleep spindle parameters from apnea patients using massive computing and decision tree

Carregando...
Imagem de Miniatura

Data

2014

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Tipo

Artigo

Direito de acesso

Acesso abertoAcesso Aberto

Resumo

In this study, Matching Pursuit (MP) procedure is applied to the detection and analysis of EEG sleep spindles in patients evaluated for suspected OSAS. Elements having the frequency of EEG sleep spindles are selected from different dictionary sizes, with and without a frequency modulation function (chirp) for signal description. This procedure was done with high computational cost in order to find best parameters for real EEG data description. At the end we used the atom parameters as input for a decision tree-based classifier, making possible to obtain a classification according to apnea-hypopnea index group and allowing to see how atom parameters such as frequency and amplitude are affected by the presence of sleep apnea.

Descrição

Idioma

Inglês

Como citar

Scientia Cum Industria, v. 2, n. 1, p. 15-18, 2014.

Itens relacionados

Financiadores