Analysis of EEG sleep spindle parameters from apnea patients using massive computing and decision tree

dc.contributor.authorGerhardt, Günther Johannes Lewczuk
dc.contributor.authorLemke, Ney [UNESP]
dc.contributor.authorCarvalho, Diego Zaquera
dc.contributor.authorSanta-Helena, Emerson Luis de
dc.contributor.authorSchönwald, Suzana Veiga
dc.contributor.authorDellagustin, Guilherme
dc.contributor.authorRybarczyk Filho, José Luiz [UNESP]
dc.contributor.institutionUniversidade de Caxias do Sul (UCS)
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionUniversidade Federal do Rio Grande do Sul (UFRGS)
dc.contributor.institutionUniversidade Federal de Sergipe (UFS)
dc.date.accessioned2016-07-07T12:35:32Z
dc.date.available2016-07-07T12:35:32Z
dc.date.issued2014
dc.description.abstractIn this study, Matching Pursuit (MP) procedure is applied to the detection and analysis of EEG sleep spindles in patients evaluated for suspected OSAS. Elements having the frequency of EEG sleep spindles are selected from different dictionary sizes, with and without a frequency modulation function (chirp) for signal description. This procedure was done with high computational cost in order to find best parameters for real EEG data description. At the end we used the atom parameters as input for a decision tree-based classifier, making possible to obtain a classification according to apnea-hypopnea index group and allowing to see how atom parameters such as frequency and amplitude are affected by the presence of sleep apnea.en
dc.description.affiliationUniversidade de Caxias do Sul (UCS), Caxias do Sul, RS, Brasil
dc.description.affiliationUniversidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Instituto de Biociências (IBB), Departamento de Física e Biofísica, Botucatu, SP, Brasil
dc.description.affiliationUniversidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brasil
dc.description.affiliationUniversidade Federal de Sergipe (UFS), São Cristóvão, SE, Brasil
dc.description.affiliationUnespUniversidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Instituto de Biociências (IBB), Departamento de Física e Biofísica, Botucatu, SP, Brasil
dc.format.extent15-18
dc.identifierhttp://dx.doi.org/10.18226/23185279.v2iss1p15
dc.identifier.citationScientia Cum Industria, v. 2, n. 1, p. 15-18, 2014.
dc.identifier.doi10.18226/23185279.v2iss1p15
dc.identifier.fileISSN2318-5279-2014-02-01-15-18.pdf
dc.identifier.issn2318-5279
dc.identifier.lattes7977035910952141
dc.identifier.urihttp://hdl.handle.net/11449/140812
dc.language.isoeng
dc.relation.ispartofScientia Cum Industria
dc.rights.accessRightsAcesso aberto
dc.sourceCurrículo Lattes
dc.subjectEEGen
dc.subjectSignal analysisen
dc.subjectMatching pursuiten
dc.subjectObstructive apneaen
dc.subjectMachine learningen
dc.subjectDecision treeen
dc.titleAnalysis of EEG sleep spindle parameters from apnea patients using massive computing and decision treeen
dc.typeArtigo
unesp.advisor.lattes7977035910952141
unesp.campusUniversidade Estadual Paulista (Unesp), Instituto de Biociências, Botucatupt
unesp.departmentFísica e Biofísica - IBBpt

Arquivos

Pacote Original

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
ISSN2318-5279-2014-02-01-15-18.pdf
Tamanho:
377.75 KB
Formato:
Adobe Portable Document Format