Split-Plot and Multi-Stratum Designs for Statistical Inference

Carregando...
Imagem de Miniatura

Data

2017-01-01

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Amer Statistical Assoc

Tipo

Artigo

Direito de acesso

Acesso abertoAcesso Aberto

Resumo

It is increasingly recognized that many industrial and engineering experiments use split-plot or other multi-stratum structures. Much recent work has concentrated on finding optimum, or near-optimum, designs for estimating the fixed effects parameters in multi-stratum designs. However, often inference, such as hypothesis testing or interval estimation, will also be required and for inference to be unbiased in the presence of model uncertainty requires pure error estimates of the variance components. Most optimal designs provide few, if any, pure error degrees of freedom. Gilmour and Trinca (2012) introduced design optimality criteria for inference in the context of completely randomized and block designs. Here these criteria are used stratum-by-stratum to obtain multi-stratum designs. It is shown that these designs have better properties for performing inference than standard optimum designs. Compound criteria, which combine the inference criteria with traditional point estimation criteria, are also used and the designs obtained are shown to compromise between point estimation and inference. Designs are obtained for two real split-plot experiments and an illustrative split-split-plot structure. Supplementary materials for this article are available online.

Descrição

Idioma

Inglês

Como citar

Technometrics. Alexandria: Amer Statistical Assoc, v. 59, n. 4, p. 446-457, 2017.

Itens relacionados