Split-Plot and Multi-Stratum Designs for Statistical Inference

dc.contributor.authorTrinca, Luzia A. [UNESP]
dc.contributor.authorGilmour, Steven G.
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionKings Coll London
dc.date.accessioned2018-11-26T17:44:29Z
dc.date.available2018-11-26T17:44:29Z
dc.date.issued2017-01-01
dc.description.abstractIt is increasingly recognized that many industrial and engineering experiments use split-plot or other multi-stratum structures. Much recent work has concentrated on finding optimum, or near-optimum, designs for estimating the fixed effects parameters in multi-stratum designs. However, often inference, such as hypothesis testing or interval estimation, will also be required and for inference to be unbiased in the presence of model uncertainty requires pure error estimates of the variance components. Most optimal designs provide few, if any, pure error degrees of freedom. Gilmour and Trinca (2012) introduced design optimality criteria for inference in the context of completely randomized and block designs. Here these criteria are used stratum-by-stratum to obtain multi-stratum designs. It is shown that these designs have better properties for performing inference than standard optimum designs. Compound criteria, which combine the inference criteria with traditional point estimation criteria, are also used and the designs obtained are shown to compromise between point estimation and inference. Designs are obtained for two real split-plot experiments and an illustrative split-split-plot structure. Supplementary materials for this article are available online.en
dc.description.affiliationSao Paulo State Univ, Dept Biostat, Botucatu, SP, Brazil
dc.description.affiliationKings Coll London, Dept Math, London, England
dc.description.affiliationUnespSao Paulo State Univ, Dept Biostat, Botucatu, SP, Brazil
dc.description.sponsorshipUNESP
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipIdUNESP: PDI/028900413/PROPG-CDC
dc.description.sponsorshipIdUNESP: PDI/828900413/PROPG-CDC
dc.description.sponsorshipIdFAPESP: 2014/01818-0
dc.format.extent446-457
dc.identifierhttp://dx.doi.org/10.1080/00401706.2017.1316315
dc.identifier.citationTechnometrics. Alexandria: Amer Statistical Assoc, v. 59, n. 4, p. 446-457, 2017.
dc.identifier.doi10.1080/00401706.2017.1316315
dc.identifier.fileWOS000418769600005.pdf
dc.identifier.issn0040-1706
dc.identifier.urihttp://hdl.handle.net/11449/163666
dc.identifier.wosWOS:000418769600005
dc.language.isoeng
dc.publisherAmer Statistical Assoc
dc.relation.ispartofTechnometrics
dc.relation.ispartofsjr1,546
dc.rights.accessRightsAcesso aberto
dc.sourceWeb of Science
dc.subjectA-optimality
dc.subjectD-optimality
dc.subjectHard-to-change factor
dc.subjectHard-to-set factor
dc.subjectMixed model
dc.subjectResponse surface
dc.subjectSplit-split-plot design
dc.titleSplit-Plot and Multi-Stratum Designs for Statistical Inferenceen
dc.typeArtigo
dcterms.rightsHolderAmer Statistical Assoc
unesp.campusUniversidade Estadual Paulista (Unesp), Instituto de Biociências, Botucatupt
unesp.departmentBioestatística - IBBpt

Arquivos

Pacote Original

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
WOS000418769600005.pdf
Tamanho:
706.84 KB
Formato:
Adobe Portable Document Format
Descrição: