Qualificações de restrições em otimização não linear com tempo contínuo

Carregando...
Imagem de Miniatura

Data

2018-03-09

Orientador

Oliveira, Valeriano Antunes de

Coorientador

Pós-graduação

Matemática - IBILCE

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Universidade Estadual Paulista (Unesp)

Tipo

Tese de doutorado

Direito de acesso

Acesso abertoAcesso Aberto

Resumo

Resumo (português)

O problema de otimização com tempo contínuo consiste em maximizar um funcional integral, sujeito a restrições de igualdade e desigualdade, onde as funções envolvidas pertencem a um espaço de Banach e variam num certo intervalo de tempo. Os resultados obtidos fornecem condições necessárias para que uma determinada função seja solução do problema. Qualificações de restrições são estabelecidas a m de se obter tais condições necessárias de otimalidade. Para problemas com restrições de desigualdade apenas, faz-se uso de um teorema de alternativa generalizado para se obter condições tipo Karush-Kuhn-Tucker. Para tratar problemas com restrições de igualdade e desigualdade, teoremas da função implícita uniforme e da aplicação inversa uniforme são necessários.

Resumo (inglês)

The continuous-time nonlinear programming problem consists in maximizing an integral functional, subject to equality and inequality constraints, where the involved functions belong to a Banach Space and vary over a certain period of time. The obtained results provide the necessary conditions for a given function to solve the problem. Constraints quali cation are established in order to achieve such necessary optimality conditions. For problems with inequality constraints only, a generalized alternative theorem is used to obtain Karush-Kuhn-Tucker-type conditions. To address problems with equality and inequality constraints, uniform implicit function and uniform inverse mapping theorems are necessary.

Descrição

Idioma

Português

Como citar

Itens relacionados

Financiadores