Publicação:
Ischemic Stroke Enhancement in Computed Tomography scans using a computational approach

dc.contributor.authorAlves, Allan F. F. [UNESP]
dc.contributor.authorPavan, Ana L. M. [UNESP]
dc.contributor.authorJennane, Rachid
dc.contributor.authorMiranda, Jose R. A. [UNESP]
dc.contributor.authorFreitas, Carlos C. M. [UNESP]
dc.contributor.authorAbdala, Nitamar
dc.contributor.authorPina, Diana R. [UNESP]
dc.contributor.authorNishikawa, R. M.
dc.contributor.authorSamuelson, F. W.
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionUniv Orleans
dc.contributor.institutionSao Paulo Fed Univ
dc.date.accessioned2019-10-04T12:33:28Z
dc.date.available2019-10-04T12:33:28Z
dc.date.issued2018-01-01
dc.description.abstractIn this work, a novel approach was proposed to enhance the visual perception of ischemic stroke in computed tomography scans. Through different image processing techniques, we enabled less experienced physicians, to reliably detect early signs of stroke. A set of 40 retrospective CT scans of patients were used, divided into two groups: 25 cases of acute ischemic stroke and 15 normal cases used as control group. All cases were obtained within 4 hours of symptoms onset. Our approach was based on the variational decomposition model and three different segmentation methods. A test determined observers' performance to correctly diagnose stroke cases. The Expectation Maximization method provided the best results among all observers. The overall sensitivity of the observer's analysis was 64% and increased to 79%. The overall specificity was 67% and increased to 78%. These results show the importance of a computational tool to assist neuroradiology decisions, especially in critical situations such as the diagnosis of ischemic stroke.en
dc.description.affiliationSao Paulo State Univ, Biosci Inst Botucatu, Dept Phys & Biophys, Dist Rubiao Jr S-N, BR-18618000 Botucatu, SP, Brazil
dc.description.affiliationUniv Orleans, Lab I3MTO, Rue Chartre,Batiment Phy Chim, Orleans, France
dc.description.affiliationUniv Estadual Paulista, Botucatu Med Sch, Dept Trop Dis & Diagnost Imaging, Dist Rubiao Jr S-N, BR-18618000 Botucatu, SP, Brazil
dc.description.affiliationSao Paulo Fed Univ, Dept Diagnost Imaging, R Napoleao de Barros 800, BR-04024002 Sao Paulo, SP, Brazil
dc.description.affiliationUnespSao Paulo State Univ, Biosci Inst Botucatu, Dept Phys & Biophys, Dist Rubiao Jr S-N, BR-18618000 Botucatu, SP, Brazil
dc.description.affiliationUnespUniv Estadual Paulista, Botucatu Med Sch, Dept Trop Dis & Diagnost Imaging, Dist Rubiao Jr S-N, BR-18618000 Botucatu, SP, Brazil
dc.format.extent7
dc.identifierhttp://dx.doi.org/10.1117/12.2293555
dc.identifier.citationMedical Imaging 2018: Image Perception, Observer Performance, And Technology Assessment. Bellingham: Spie-int Soc Optical Engineering, v. 10577, 7 p., 2018.
dc.identifier.doi10.1117/12.2293555
dc.identifier.issn0277-786X
dc.identifier.urihttp://hdl.handle.net/11449/185195
dc.identifier.wosWOS:000452642000038
dc.language.isoeng
dc.publisherSpie-int Soc Optical Engineering
dc.relation.ispartofMedical Imaging 2018: Image Perception, Observer Performance, And Technology Assessment
dc.rights.accessRightsAcesso aberto
dc.sourceWeb of Science
dc.titleIschemic Stroke Enhancement in Computed Tomography scans using a computational approachen
dc.typeTrabalho apresentado em evento
dcterms.rightsHolderSpie-int Soc Optical Engineering
dspace.entity.typePublication
unesp.author.lattes3177448334105343[5]
unesp.author.orcid0000-0001-5210-4336[5]
unesp.campusUniversidade Estadual Paulista (Unesp), Faculdade de Medicina, Botucatupt
unesp.campusUniversidade Estadual Paulista (Unesp), Instituto de Biociências, Botucatupt
unesp.departmentDoenças Tropicais e Diagnósticos por Imagem - FMBpt
unesp.departmentFísica e Biofísica - IBBpt

Arquivos