Soluções auto-similares das equações de Navier-Stokes em Lp-Fraco
Carregando...
Arquivos
Data
2013-02-27
Autores
Orientador
Pereira, Juliana Conceição Precioso
Coorientador
Pós-graduação
Matemática - IBILCE
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Universidade Estadual Paulista (Unesp)
Tipo
Dissertação de mestrado
Direito de acesso
Acesso aberto
Resumo
Resumo (português)
Neste trabalho, estudaremos as equações de Navier-Stokes em Rn e mostraremos a existência de solução global, quando a velocidade inicial u0(x) pertence ao espaço Lp-fraco e tem norma suficientemente pequena. A análise da evolução da solução é realizada em espaços funcionais de Kato-Fujita, invariantes pelo scaling de Navier-Stokes. Mostraremos também que se u0(x) é homogênea de grau −1, as soluções também são invariantes por este scaling, ou seja, elas são auto-similares. Além disso, mostraremos a estabilidade assintótica das soluções mild
Resumo (inglês)
In this work, we study the Navier-Stokes equations in Rn and show the existence of global solution, when the initial velocity u0(x) belongs to weak Lp space with a sufficiently small norm. The evolution of the solution is analyzed in function spaces with Kato-Fujita type norms invariant by scaling of Navier-Stokes. We also show that if u0 is an homogeneous function of degree −1, the solutions are also invariant by that scaling, i.e., they are self-similar. Moreover, we show the asymptotic stability of mild solutions
Descrição
Idioma
Português
Como citar
LOPES, Juliana Honda. Soluções auto-similares das equações de Navier-Stokes em Lp-Fraco. 2013. 78 f. Dissertação (mestrado) - Universidade Estadual Paulista Julio de Mesquita Filho, Instituto de Biociências, Letras e Ciências Exatas, 2013.