Semi-automatic CNN Architectural Pruning using the Bayesian Case Model and Dimensionality Reduction Visualization
dc.contributor.author | Marcilio-Jr, Wilson E. [UNESP] | |
dc.contributor.author | Eler, Danilo [UNESP] | |
dc.contributor.author | Guilherme, Ivan [UNESP] | |
dc.contributor.author | Hurter, C. | |
dc.contributor.author | Purchase, H. | |
dc.contributor.author | Bouatouch, K. | |
dc.contributor.institution | Universidade Estadual Paulista (UNESP) | |
dc.date.accessioned | 2022-11-30T13:42:21Z | |
dc.date.available | 2022-11-30T13:42:21Z | |
dc.date.issued | 2022-01-01 | |
dc.description.abstract | Visualization techniques have been applied to reasoning about complex machine learning models. These visual approaches aim to enhance the understanding of black-box models' decisions or guide in hyperparameters configuration, such as the number of layers and neurons/filters in deep neural networks. While several works address the architectural tuning of convolutional neural networks (CNNs), only a few works face the problem from a semi-automatic perspective. This work presents a novel application of the Bayesian Case Model that uses visualization strategies to convey the most important filters of convolutional layers for image classification. A heatmap coordinated with a scatterplot visualization emphasizes the filters with the most contribution to the CNN prediction. Our methodology is evaluated on a case study using the MNIST dataset. | en |
dc.description.affiliation | Sao Paulo State Univ UNESP, Dept Math & Comp Sci, Presidente Prudente, SP, Brazil | |
dc.description.affiliation | Sao Paulo State Univ UNESP, Dept Stat Appl Math & Comp, Rio Claro, SP, Brazil | |
dc.description.affiliationUnesp | Sao Paulo State Univ UNESP, Dept Math & Comp Sci, Presidente Prudente, SP, Brazil | |
dc.description.affiliationUnesp | Sao Paulo State Univ UNESP, Dept Stat Appl Math & Comp, Rio Claro, SP, Brazil | |
dc.description.sponsorship | Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) | |
dc.description.sponsorship | Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) | |
dc.description.sponsorshipId | FAPESP: 2018/17881-3 | |
dc.description.sponsorshipId | FAPESP: 2018/25755-8 | |
dc.format.extent | 203-209 | |
dc.identifier | http://dx.doi.org/10.5220/0010991000003124 | |
dc.identifier.citation | Proceedings Of The 17th International Joint Conference On Computer Vision, Imaging And Computer Graphics Theory And Applications (ivapp), Vol 3. Setubal: Scitepress, p. 203-209, 2022. | |
dc.identifier.doi | 10.5220/0010991000003124 | |
dc.identifier.issn | 2184-4321 | |
dc.identifier.uri | http://hdl.handle.net/11449/237700 | |
dc.identifier.wos | WOS:000777508400019 | |
dc.language.iso | eng | |
dc.publisher | Scitepress | |
dc.relation.ispartof | Proceedings Of The 17th International Joint Conference On Computer Vision, Imaging And Computer Graphics Theory And Applications (ivapp), Vol 3 | |
dc.source | Web of Science | |
dc.subject | CNN Pruning | |
dc.subject | Case-based Reasoning | |
dc.subject | Visualization | |
dc.title | Semi-automatic CNN Architectural Pruning using the Bayesian Case Model and Dimensionality Reduction Visualization | en |
dc.type | Trabalho apresentado em evento | |
dcterms.rightsHolder | Scitepress | |
unesp.department | Matemática e Computação - FCT | pt |