Performance indicators analysis in software processes using semi-supervised learning with information visualization
dc.contributor.author | Bodo, Leandro [UNESP] | |
dc.contributor.author | de Oliveira, Hilda Carvalho [UNESP] | |
dc.contributor.author | Breve, Fabricio Aparecido [UNESP] | |
dc.contributor.author | Eler, Danilo Medeiros [UNESP] | |
dc.contributor.institution | Universidade Estadual Paulista (Unesp) | |
dc.date.accessioned | 2018-12-11T17:27:47Z | |
dc.date.available | 2018-12-11T17:27:47Z | |
dc.date.issued | 2016-04-01 | |
dc.description.abstract | Software development process requires judicious quality control, using performance indicators to support decision-making in the different processes chains. This paper recommends the use of machine learning with the semi supervised algorithms to analyze these indicators. In this context, this paper proposes the use of visualization techniques of multidimensional information to support the labeling process of samples, increasing the reliability of the labeled indicators (group or individual). The experiments show analysis from real indicators data of a software development company and use the algorithm bioinspired Particle Competition and Cooperation. The information visualization techniques used are: Least Square Projection, Classical Multidimensional Scaling and Parallel Coordinates. Those techniques help to correct the labeling process performed by specialists (labelers), enabling the identification of mistakes in order to improve the data accuracy for application of the semi-supervised algorithm. | en |
dc.description.affiliation | Department of Statistics Applied Mathematics and Computer Science Unesp - Universidade Estadual Paulista | |
dc.description.affiliation | Department of Mathematics and Computer Science Unesp - Universidade Estadual Paulista | |
dc.description.affiliation | Unesp - Universidade Estadual Paulista | |
dc.description.affiliationUnesp | Department of Statistics Applied Mathematics and Computer Science Unesp - Universidade Estadual Paulista | |
dc.description.affiliationUnesp | Department of Mathematics and Computer Science Unesp - Universidade Estadual Paulista | |
dc.description.affiliationUnesp | Unesp - Universidade Estadual Paulista | |
dc.format.extent | 555-568 | |
dc.identifier | http://dx.doi.org/10.1007/978-3-319-32467-8_49 | |
dc.identifier.citation | Advances in Intelligent Systems and Computing, v. 448, p. 555-568. | |
dc.identifier.doi | 10.1007/978-3-319-32467-8_49 | |
dc.identifier.issn | 2194-5357 | |
dc.identifier.lattes | 5693860025538327 | |
dc.identifier.orcid | 0000-0002-1123-9784 | |
dc.identifier.scopus | 2-s2.0-84962626192 | |
dc.identifier.uri | http://hdl.handle.net/11449/177936 | |
dc.language.iso | eng | |
dc.relation.ispartof | Advances in Intelligent Systems and Computing | |
dc.rights.accessRights | Acesso aberto | |
dc.source | Scopus | |
dc.subject | BSC | |
dc.subject | Information visualization | |
dc.subject | Machine learning | |
dc.subject | MPS-SW | |
dc.subject | Performance indicators | |
dc.subject | Software processes | |
dc.subject | Software quality | |
dc.title | Performance indicators analysis in software processes using semi-supervised learning with information visualization | en |
dc.type | Capítulo de livro | |
unesp.author.lattes | 5693860025538327[3] | |
unesp.author.orcid | 0000-0002-1123-9784[3] | |
unesp.campus | Universidade Estadual Paulista (Unesp), Instituto de Geociências e Ciências Exatas, Rio Claro | pt |
unesp.department | Matemática e Computação - FCTEstatística, Matemática Aplicada e Computação - IGCE | pt |