Logo do repositório
 

ABF: A data-driven approach for algal bloom forecasting using machine intelligence and remotely sensed data series[Formula presented]

Carregando...
Imagem de Miniatura

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Tipo

Artigo

Direito de acesso

Resumo

This paper presents a fully automated framework for algal bloom forecasting in inland water by combining remote sensing data series and unsupervised machine learning concepts. In contrast to other methods in the specialized literature that usually employ pre-labeled data, the proposed approach was designed to be fully autonomous concerning pre-requisites, assuming as input only a time series of remotely sensed products to forecast algal proliferation. In more technical terms, the designed machine-intelligent methodology comprises the steps of pre-processing, feature extraction and modeling, and it learns unsupervised from past events to predict future scenarios of algal blooms, outputting algal insurgence maps.

Descrição

Palavras-chave

Algal bloom, Forecasting, Machine learning, Remote sensing

Idioma

Inglês

Citação

Software Impacts, v. 17.

Itens relacionados

Unidades

Departamentos

Cursos de graduação

Programas de pós-graduação