Evaluation of statistical and Haralick texture features for lymphoma histological images classification

Nenhuma Miniatura disponível

Data

2021-01-01

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Tipo

Artigo

Direito de acesso

Resumo

The investigation of different types of cancer can be performed by images classification with features extracted from specific regions identified by a segmentation step. Therefore, this study presents the evaluation of texture features extracted from neoplastic nuclei for the classification of lymphomas images. The neoplastic nuclei were segmented by steps of pre and post-processing and a thresholding. Statistical and Haralick’s features extracted from wavelet and ranklet transforms were evaluated with different classifiers. The use of the statistical metrics from the wavelet transform in association with the K-nearest neighbour classifier provided the best results in most of the two-class classifications.

Descrição

Idioma

Inglês

Como citar

Computer Methods in Biomechanics and Biomedical Engineering: Imaging and Visualization.

Itens relacionados

Financiadores

Coleções