Atenção!


O atendimento às questões referentes ao Repositório Institucional será interrompido entre os dias 20 de dezembro de 2024 a 5 de janeiro de 2025.

Pedimos a sua compreensão e aproveitamos para desejar boas festas!

 

Evaluation of statistical and Haralick texture features for lymphoma histological images classification

dc.contributor.authorAzevedo Tosta, Thaína A.
dc.contributor.authorde Faria, Paulo R.
dc.contributor.authorNeves, Leandro A. [UNESP]
dc.contributor.authordo Nascimento, Marcelo Z.
dc.contributor.institutionUniversidade Federal do ABC (UFABC)
dc.contributor.institutionUniversidade de São Paulo (USP)
dc.contributor.institutionUniversidade Federal de Uberlândia (UFU)
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2021-06-25T10:26:43Z
dc.date.available2021-06-25T10:26:43Z
dc.date.issued2021-01-01
dc.description.abstractThe investigation of different types of cancer can be performed by images classification with features extracted from specific regions identified by a segmentation step. Therefore, this study presents the evaluation of texture features extracted from neoplastic nuclei for the classification of lymphomas images. The neoplastic nuclei were segmented by steps of pre and post-processing and a thresholding. Statistical and Haralick’s features extracted from wavelet and ranklet transforms were evaluated with different classifiers. The use of the statistical metrics from the wavelet transform in association with the K-nearest neighbour classifier provided the best results in most of the two-class classifications.en
dc.description.affiliationCenter of Mathematics Computer Science and Cognition Federal University of ABC (UFABC)
dc.description.affiliationScience and Technology Institute Federal University of São Paulo (UNIFESP)
dc.description.affiliationDepartment of Histology and Morphology Institute of Biomedical Science Federal University of Uberlândia (UFU)
dc.description.affiliationDepartment of Computer Science and Statistics São Paulo State University (UNESP)
dc.description.affiliationFaculty of Computer Science Federal University of Uberlândia (UFU)
dc.description.affiliationUnespDepartment of Computer Science and Statistics São Paulo State University (UNESP)
dc.identifierhttp://dx.doi.org/10.1080/21681163.2021.1902401
dc.identifier.citationComputer Methods in Biomechanics and Biomedical Engineering: Imaging and Visualization.
dc.identifier.doi10.1080/21681163.2021.1902401
dc.identifier.issn2168-1171
dc.identifier.issn2168-1163
dc.identifier.scopus2-s2.0-85103246655
dc.identifier.urihttp://hdl.handle.net/11449/206110
dc.language.isoeng
dc.relation.ispartofComputer Methods in Biomechanics and Biomedical Engineering: Imaging and Visualization
dc.sourceScopus
dc.subjectclassification
dc.subjectLymphoma histological images
dc.subjectnuclear segmentation
dc.subjecttexture features
dc.subjectwavelet and ranklet transforms
dc.titleEvaluation of statistical and Haralick texture features for lymphoma histological images classificationen
dc.typeArtigo

Arquivos

Coleções