A new approach to contextual learning using interval arithmetic and its applications for land-use classification
dc.contributor.author | Pereira, Danillo Roberto [UNESP] | |
dc.contributor.author | Papa, Joao Paulo [UNESP] | |
dc.contributor.institution | Universidade Estadual Paulista (Unesp) | |
dc.date.accessioned | 2018-11-26T17:10:28Z | |
dc.date.available | 2018-11-26T17:10:28Z | |
dc.date.issued | 2016-11-01 | |
dc.description.abstract | Contextual-based classification has been paramount in the last years, since spatial and temporal information play an important role during the process of learning the behavior of the data. Sequential learning is also often employed in this context in order to augment the feature vector of a given sample with information about its neighborhood. However, most part of works describe the samples using features obtained through standard arithmetic tools, which may not reflect the data as a whole. In this work, we introduced the Interval Arithmetic to the context of land-use classification in satellite images by describing a given sample and its neighbors using interval of values, thus allowing a better representation of the model. Experiments over four satellite images using two distinct supervised classifiers showed we can considerably improve sequential learning-oriented pattern classification using concepts from Interval Arithmetic. (C) 2016 Elsevier B.V. All rights reserved. | en |
dc.description.affiliation | Sao Paulo State Univ, Dept Comp, Bauru, SP, Brazil | |
dc.description.affiliationUnesp | Sao Paulo State Univ, Dept Comp, Bauru, SP, Brazil | |
dc.description.sponsorship | Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) | |
dc.description.sponsorship | Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) | |
dc.description.sponsorshipId | FAPESP: 2014/16250-9 | |
dc.description.sponsorshipId | FAPESP: 2015/50319-9 | |
dc.description.sponsorshipId | CNPq: 470571/2013-6 | |
dc.description.sponsorshipId | CNPq: 306166/2014-3 | |
dc.description.sponsorshipId | CNPq: 487032/2012-8 | |
dc.format.extent | 188-194 | |
dc.identifier | http://dx.doi.org/10.1016/j.patrec.2016.03.020 | |
dc.identifier.citation | Pattern Recognition Letters. Amsterdam: Elsevier Science Bv, v. 83, p. 188-194, 2016. | |
dc.identifier.doi | 10.1016/j.patrec.2016.03.020 | |
dc.identifier.file | WOS000386874800010.pdf | |
dc.identifier.issn | 0167-8655 | |
dc.identifier.uri | http://hdl.handle.net/11449/162117 | |
dc.identifier.wos | WOS:000386874800010 | |
dc.language.iso | eng | |
dc.publisher | Elsevier B.V. | |
dc.relation.ispartof | Pattern Recognition Letters | |
dc.relation.ispartofsjr | 0,662 | |
dc.rights.accessRights | Acesso aberto | |
dc.source | Web of Science | |
dc.subject | Sliding Window | |
dc.subject | Sequential learning | |
dc.subject | Contextual learning | |
dc.subject | Interval Arithmetic | |
dc.title | A new approach to contextual learning using interval arithmetic and its applications for land-use classification | en |
dc.type | Artigo | |
dcterms.license | http://www.elsevier.com/about/open-access/open-access-policies/article-posting-policy | |
dcterms.rightsHolder | Elsevier B.V. | |
unesp.author.orcid | 0000-0001-7934-6482[1] | |
unesp.author.orcid | 0000-0002-6494-7514[2] | |
unesp.campus | Universidade Estadual Paulista (Unesp), Faculdade de Ciências, Bauru | pt |
unesp.department | Computação - FC | pt |
Arquivos
Pacote Original
1 - 1 de 1
Carregando...
- Nome:
- WOS000386874800010.pdf
- Tamanho:
- 3.12 MB
- Formato:
- Adobe Portable Document Format
- Descrição: