A new approach to contextual learning using interval arithmetic and its applications for land-use classification

dc.contributor.authorPereira, Danillo Roberto [UNESP]
dc.contributor.authorPapa, Joao Paulo [UNESP]
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2018-11-26T17:10:28Z
dc.date.available2018-11-26T17:10:28Z
dc.date.issued2016-11-01
dc.description.abstractContextual-based classification has been paramount in the last years, since spatial and temporal information play an important role during the process of learning the behavior of the data. Sequential learning is also often employed in this context in order to augment the feature vector of a given sample with information about its neighborhood. However, most part of works describe the samples using features obtained through standard arithmetic tools, which may not reflect the data as a whole. In this work, we introduced the Interval Arithmetic to the context of land-use classification in satellite images by describing a given sample and its neighbors using interval of values, thus allowing a better representation of the model. Experiments over four satellite images using two distinct supervised classifiers showed we can considerably improve sequential learning-oriented pattern classification using concepts from Interval Arithmetic. (C) 2016 Elsevier B.V. All rights reserved.en
dc.description.affiliationSao Paulo State Univ, Dept Comp, Bauru, SP, Brazil
dc.description.affiliationUnespSao Paulo State Univ, Dept Comp, Bauru, SP, Brazil
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipIdFAPESP: 2014/16250-9
dc.description.sponsorshipIdFAPESP: 2015/50319-9
dc.description.sponsorshipIdCNPq: 470571/2013-6
dc.description.sponsorshipIdCNPq: 306166/2014-3
dc.description.sponsorshipIdCNPq: 487032/2012-8
dc.format.extent188-194
dc.identifierhttp://dx.doi.org/10.1016/j.patrec.2016.03.020
dc.identifier.citationPattern Recognition Letters. Amsterdam: Elsevier Science Bv, v. 83, p. 188-194, 2016.
dc.identifier.doi10.1016/j.patrec.2016.03.020
dc.identifier.fileWOS000386874800010.pdf
dc.identifier.issn0167-8655
dc.identifier.urihttp://hdl.handle.net/11449/162117
dc.identifier.wosWOS:000386874800010
dc.language.isoeng
dc.publisherElsevier B.V.
dc.relation.ispartofPattern Recognition Letters
dc.relation.ispartofsjr0,662
dc.rights.accessRightsAcesso aberto
dc.sourceWeb of Science
dc.subjectSliding Window
dc.subjectSequential learning
dc.subjectContextual learning
dc.subjectInterval Arithmetic
dc.titleA new approach to contextual learning using interval arithmetic and its applications for land-use classificationen
dc.typeArtigo
dcterms.licensehttp://www.elsevier.com/about/open-access/open-access-policies/article-posting-policy
dcterms.rightsHolderElsevier B.V.
unesp.author.orcid0000-0001-7934-6482[1]
unesp.author.orcid0000-0002-6494-7514[2]
unesp.campusUniversidade Estadual Paulista (Unesp), Faculdade de Ciências, Baurupt
unesp.departmentComputação - FCpt

Arquivos

Pacote Original

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
WOS000386874800010.pdf
Tamanho:
3.12 MB
Formato:
Adobe Portable Document Format
Descrição: