Plant species identification using color learning resources, shape, texture, through machine learning and artificial neural networks

dc.contributor.authorBambil, Deborah
dc.contributor.authorPistori, Hemerson
dc.contributor.authorBao, Francielli [UNESP]
dc.contributor.authorWeber, Vanessa
dc.contributor.authorAlves, Flávio Macedo
dc.contributor.authorGonçalves, Eduardo Gomes
dc.contributor.authorde Alencar Figueiredo, Lúcio Flávio
dc.contributor.authorAbreu, Urbano G. P.
dc.contributor.authorArruda, Rafael
dc.contributor.authorBortolotto, Ieda Maria
dc.contributor.institutionUniversidade Federal de Mato Grosso do Sul (UFMS)
dc.contributor.institutionUniversity of Brasília (UnB)
dc.contributor.institutionCatholic University Dom Bosco
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.contributor.institutionMato Grosso do Sul State University
dc.contributor.institutionUnB
dc.contributor.institutionEmpresa Brasileira de Pesquisa Agropecuária (EMBRAPA)
dc.contributor.institutionFederal University of Mato Grosso
dc.date.accessioned2022-04-28T19:28:35Z
dc.date.available2022-04-28T19:28:35Z
dc.date.issued2020-12-01
dc.description.abstractMorphological characteristics are still the most used tools for the identification of plant species. In this context, leaves are the most available plant organ used, given their perenniality and diversity. Computer-based image analysis help extract morphological features for botanical identification and maybe a solution to taxonomic problems requiring extensively trained specialists that use visual identification as the primary method for this approach. In this study, were collected 40 leaves from 30 trees and shrub species from 19 different families. Here, we compared two popular image capture devices: a scanner and a mobile phone. Features analyzed comprised color, shape, and texture. The performance of both devices was compared through three machine learning algorithms (adaptive boosting—AdaBoost, random forest, support vector machine—SVM) and an artificial neural network model (deep learning). Computer vision showed to be efficient in the identification of species (higher than 93%), with similar results obtained for both mobile phones and scanners. The algorithms SVM, random forest and deep learning performed more efficiently than AdaBoost. Based on the results, we present the Inovtaxon Plant Species Identification Software, available at https://github.com/DeborahBambil/Inovtaxon.en
dc.description.affiliationDepartment of Plant Biology Federal University of Mato Grosso do Sul (UFMS)
dc.description.affiliationDepartment of Cell Biology University of Brasília (UnB)
dc.description.affiliationCatholic University Dom Bosco
dc.description.affiliationBioscience Institute São Paulo State University
dc.description.affiliationDirectory of Informatics Mato Grosso do Sul State University
dc.description.affiliationDepartment of Botany UnB
dc.description.affiliationEmbrapa Pantanal
dc.description.affiliationFederal University of Mato Grosso
dc.description.affiliationUnespBioscience Institute São Paulo State University
dc.description.sponsorshipFundação de Apoio ao Desenvolvimento do Ensino, Ciência e Tecnologia do Estado de Mato Grosso do Sul
dc.format.extent480-484
dc.identifierhttp://dx.doi.org/10.1007/s10669-020-09769-w
dc.identifier.citationEnvironment Systems and Decisions, v. 40, n. 4, p. 480-484, 2020.
dc.identifier.doi10.1007/s10669-020-09769-w
dc.identifier.issn2194-5411
dc.identifier.issn2194-5403
dc.identifier.scopus2-s2.0-85083461863
dc.identifier.urihttp://hdl.handle.net/11449/221461
dc.language.isoeng
dc.relation.ispartofEnvironment Systems and Decisions
dc.sourceScopus
dc.subjectComputer vision
dc.subjectDeep learning
dc.subjectInovtaxon
dc.subjectMachine learning
dc.subjectMorphology
dc.subjectNeural networks
dc.subjectTaxonomy
dc.titlePlant species identification using color learning resources, shape, texture, through machine learning and artificial neural networksen
dc.typeArtigo
unesp.author.orcid0000-0001-8307-0888[1]
unesp.author.orcid0000-0001-8181-760X[2]
unesp.author.orcid0000-0003-0536-1668[3]
unesp.author.orcid0000-0002-6688-369X[4]
unesp.author.orcid0000-0001-5634-8266[5]
unesp.author.orcid0000-0002-0634-3528[6]
unesp.author.orcid0000-0001-8868-1717[7]
unesp.author.orcid0000-0001-9598-701X[8]
unesp.author.orcid0000-0003-2869-5134[9]
unesp.author.orcid0000-0002-6884-7051[10]

Arquivos

Coleções