Atenção!


O atendimento às questões referentes ao Repositório Institucional será interrompido entre os dias 20 de dezembro de 2024 a 5 de janeiro de 2025.

Pedimos a sua compreensão e aproveitamos para desejar boas festas!

 

Polinômios de Szegö e análise de frequência

Carregando...
Imagem de Miniatura

Data

2005-07-21

Orientador

Bracciali, Cleonice Fátima

Coorientador

Pós-graduação

Matemática - IBILCE

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Universidade Estadual Paulista (Unesp)

Tipo

Dissertação de mestrado

Direito de acesso

Acesso abertoAcesso Aberto

Resumo

Resumo (português)

O objetivo deste trabalho é estudar os polinômios de Szegõ, que são ortogonais no círculo unitário, e suas relações com certas frações contínuas de Perron-Carathéodory e quadratura no círculo unitário, afim de resolver o problema de momento trigonométrico. Além disso, estudar a utilização dos polinômios de Szegõ na determinação das freqüências de um sinal trigonométrico em tempo discreto xN(m). Para isso, investigamos os polinômios de Szegõ gerados por uma medida N definida através do sinal trigonométrico xN(m), para m = 0, 1, 2,...N -1, e o comportamento dos zeros desses polinômios quando N_8.

Resumo (inglês)

The purpose here is to study the orthogonal polynomials on the unit circle, known as Szegõ polynomials, and the relations to Perron- Carathéodory continued fractions, and quadratures on the unit circle in order to solve the trigonometric moment problem. Another purpose is to study how the Szegõ polynomials can be used to determine the frequencies from a discrete time trigonometric signal xN(m). We investigate the Szegõ polynomials associated with a measure N defined by the trigonometric sinal xN(m), m = 0, 1, 2, ...N -1. We study the behaviour of zeros of these polynomials when N 8.

Descrição

Idioma

Português

Como citar

MILANI, Fernando Feltrin. Polinômios de Szegö e análise de frequência. 2005. 75 f. Dissertação (mestrado) - Universidade Estadual Paulista, Instituto de Biociências, Letras e Ciências Exatas, 2005.

Itens relacionados