Publicação:
Modeling thermal conductivity, specific heat, and density of milk: A neural network approach

Nenhuma Miniatura disponível

Data

2004-11-01

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Marcel Dekker Inc

Tipo

Artigo

Direito de acesso

Acesso restrito

Resumo

The accurate determination of thermophysical properties of milk is very important for design, simulation, optimization, and control of food processing such as evaporation, heat exchanging, spray drying, and so forth. Generally, polynomial methods are used for prediction of these properties based on empirical correlation to experimental data. Artificial neural networks are better Suited for processing noisy and extensive knowledge indexing. This article proposed the application of neural networks for prediction of specific heat, thermal conductivity, and density of milk with temperature ranged from 2.0 to 71.0degreesC, 72.0 to 92.0% of water content (w/w), and 1.350 to 7.822% of fat content (w/w). Artificial neural networks presented a better prediction capability of specific heat, thermal conductivity, and density of milk than polynomial modeling. It showed a reasonable alternative to empirical modeling for thermophysical properties of foods.

Descrição

Idioma

Inglês

Como citar

International Journal of Food Properties. New York: Marcel Dekker Inc., v. 7, n. 3, p. 531-539, 2004.

Itens relacionados

Financiadores

Coleções

Unidades

Departamentos

Cursos de graduação

Programas de pós-graduação