Evolving long short-term memory networks

Nenhuma Miniatura disponível

Data

2020-01-01

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Tipo

Trabalho apresentado em evento

Direito de acesso

Resumo

Machine learning techniques have been massively employed in the last years over a wide variety of applications, especially those based on deep learning, which obtained state-of-the-art results in several research fields. Despite the success, such techniques still suffer from some shortcomings, such as the sensitivity to their hyperparameters, whose proper selection is context-dependent, i.e., the model may perform better over each dataset when using a specific set of hyperparameters. Therefore, we propose an approach based on evolutionary optimization techniques for fine-tuning Long Short-Term Memory networks. Experiments were conducted over three public word-processing datasets for part-of-speech tagging. The results showed the robustness of the proposed approach for the aforementioned task.

Descrição

Idioma

Inglês

Como citar

Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), v. 12138 LNCS, p. 337-350.

Itens relacionados